NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112, USA.
Mol Ecol Resour. 2010 Sep;10(5):785-96. doi: 10.1111/j.1755-0998.2010.02876.x. Epub 2010 May 18.
The concept of effective population size (N(e) ) is based on an elegantly simple idea which, however, rapidly becomes very complex when applied to most real-world situations. In natural populations, spatial and temporal stratifications create different classes of individuals with different vital rates, and this in turn affects (generally reduces) N(e) in complex ways. I consider how these natural stratifications influence our understanding of effective size and how to estimate it, and what the consequences are for conservation and management of natural populations. Important points that emerge include the following: 1 The relative influences of local vs metapopulation N(e) depend on a variety of factors, including the time frame of interest. 2 Levels of diversity in local populations are strongly influenced by even low levels of migration, so these measures are not reliable indicators of local N(e) . 3 For long-term effective size, obtaining a reliable estimate of mutation rate is the most important consideration; unless this is accomplished, estimates can be biased by orders of magnitude. 4 At least some estimators of contemporary N(e) appear to be robust to relatively high (approximately 10%) equilibrium levels of migration, so under many realistic scenarios they might yield reliable estimates of local N(e) . 5 Age structure probably has little effect on long-term estimators of N(e) but can strongly influence contemporary estimates. 6 More research is needed in several key areas: (i) to disentangle effects of selection and drift in metapopulations connected by intermediate levels of migration; (ii) to elucidate the relationship between N(b) (effective number of breeders per year) and N(e) per generation in age-structured populations; (iii) to perform rigorous sensitivity analyses of new likelihood and coalescent-based methods for estimating demographic and evolutionary histories.
有效种群大小(Ne)的概念基于一个优雅而简单的想法,但当应用于大多数现实情况时,它很快就变得非常复杂。在自然种群中,时空分层会产生具有不同生命率的不同个体类别,这反过来又以复杂的方式影响(通常会降低)Ne。我考虑了这些自然分层如何影响我们对有效大小的理解以及如何估计它,以及对自然种群的保护和管理有什么影响。出现的重要观点包括以下几点:
局部与复合种群 Ne 的相对影响取决于多种因素,包括感兴趣的时间框架。
局部种群的多样性水平受即使是低水平的迁移的强烈影响,因此这些措施不是局部 Ne 的可靠指标。
对于长期有效大小,获得可靠的突变率估计是最重要的考虑因素;除非完成此操作,否则估计值可能会有数量级的偏差。
至少一些当代 Ne 的估计器似乎对相对较高(约 10%)的平衡迁移水平具有鲁棒性,因此在许多现实情况下,它们可能会对局部 Ne 做出可靠的估计。
年龄结构可能对长期 Ne 估计值的影响不大,但会强烈影响当代估计值。
在几个关键领域需要更多的研究:(i)在由中间水平的迁移连接的复合种群中分离选择和漂变的影响;(ii)阐明具有年龄结构的种群中 Nb(每年有效的繁殖者数量)与每一代 Ne 之间的关系;(iii)对新的基于似然和合并的方法进行严格的敏感性分析,以估计人口和进化历史。