Suppr超能文献

使用氯离子作为氧代试剂探究两种黄素蛋白氧化酶中的氧活化位点。

Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate.

机构信息

Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.

出版信息

Biochemistry. 2011 Jun 21;50(24):5521-34. doi: 10.1021/bi200388g. Epub 2011 May 26.

Abstract

A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

摘要

黄素环的 si-面上方的单个碱性残基是葡萄糖氧化酶(GOX)(His516)和单体肌氨酸氧化酶(MSOX)(Lys265)中氧活化的部位。这两种黄素酶的晶体结构都在氧活化部位显示出一个小口袋,该口袋可能为超氧阴离子提供了一个预先组织的结合位点,超氧阴离子是氧的两电子还原的必需中间产物。根据溶液和结构研究,氯结合在这些极性氧活化部位。首先,氯与 GOX 和 MSOX 形成光谱可检测的复合物。His516 的质子化形式是氧化 GOX 与氯紧密结合以及还原 GOX 与氧快速反应所必需的。形成二元 MSOX·氯复合物需要 Lys265,并且在 Lys265Met 中观察不到。氯结合到 MSOX 不会影响黄素环的 re-面上方的肌氨酸类似物(MTA,甲基硫代乙酸酯)的结合。通过确定二元 MSOX·氯复合物和三元 MSOX·氯·MTA 复合物的晶体结构提供了明确的证据。氯结合在小口袋中,占据了原本被水分子占据的位置,并与排列在近似四面体几何形状的四个配体形成氢键:Lys265:NZ、Arg49:NH1 和两个水分子,其中一个水分子与 FAD:N5 形成氢键。结果表明,氯 (i) 充当氧替代物,(ii) 是极性氧活化部位的有效探针,以及 (iii) 为氙气方法提供了有价值的补充工具,氙气方法用于映射非极性氧结合腔。

相似文献

1
Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate.
Biochemistry. 2011 Jun 21;50(24):5521-34. doi: 10.1021/bi200388g. Epub 2011 May 26.
3
Identification of the oxygen activation site in monomeric sarcosine oxidase: role of Lys265 in catalysis.
Biochemistry. 2008 Sep 2;47(35):9124-35. doi: 10.1021/bi8008642. Epub 2008 Aug 12.
4
Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.
Biochemistry. 2000 Aug 1;39(30):8813-24. doi: 10.1021/bi000349z.
6
Kinetics of O2 Entry and Exit in Monomeric Sarcosine Oxidase via Markovian Milestoning Molecular Dynamics.
J Chem Theory Comput. 2016 Jun 14;12(6):2964-72. doi: 10.1021/acs.jctc.6b00071. Epub 2016 May 19.
7
The reaction mechanism of sarcosine oxidase elucidated using FMO and QM/MM methods.
Phys Chem Chem Phys. 2017 Apr 12;19(15):9811-9822. doi: 10.1039/c6cp08172j.
8
Covalent flavinylation of monomeric sarcosine oxidase: identification of a residue essential for holoenzyme biosynthesis.
Biochemistry. 2008 Jan 29;47(4):1136-43. doi: 10.1021/bi702077q. Epub 2008 Jan 8.
9
Ionization of zwitterionic amine substrates bound to monomeric sarcosine oxidase.
Biochemistry. 2005 Dec 27;44(51):16866-74. doi: 10.1021/bi051898d.

引用本文的文献

1
Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors.
Front Bioeng Biotechnol. 2024 Aug 5;12:1440598. doi: 10.3389/fbioe.2024.1440598. eCollection 2024.
2
Monitoring carbohydrate 3D structure quality with the database.
Beilstein J Org Chem. 2024 Apr 24;20:931-939. doi: 10.3762/bjoc.20.83. eCollection 2024.
3
Online carbohydrate 3D structure validation with the Privateer web app.
Acta Crystallogr F Struct Biol Commun. 2024 Feb 1;80(Pt 2):30-35. doi: 10.1107/S2053230X24000359. Epub 2024 Jan 24.
5
Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring.
Nanoscale Adv. 2022 May 4;4(11):2420-2427. doi: 10.1039/d2na00092j. eCollection 2022 May 31.
7
Tuning of p values activates substrates in flavin-dependent aromatic hydroxylases.
J Biol Chem. 2020 Mar 20;295(12):3965-3981. doi: 10.1074/jbc.RA119.011884. Epub 2020 Feb 2.
8
Oxidative cyclization of -methyl-dopa by a fungal flavoenzyme of the amine oxidase family.
J Biol Chem. 2018 Nov 2;293(44):17021-17032. doi: 10.1074/jbc.RA118.004227. Epub 2018 Sep 7.
9
Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4909-4914. doi: 10.1073/pnas.1801189115. Epub 2018 Apr 23.
10
Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase.
ACS Catal. 2017 Sep 1;7(9):6188-6197. doi: 10.1021/acscatal.7b01575. Epub 2017 Aug 1.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Near-atomic resolution structures of urate oxidase complexed with its substrate and analogues: the protonation state of the ligand.
Acta Crystallogr D Biol Crystallogr. 2010 Jun;66(Pt 6):714-24. doi: 10.1107/S090744491001142X. Epub 2010 May 15.
4
Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):657-62. doi: 10.1073/pnas.0909033107. Epub 2009 Dec 22.
6
Identification of the oxygen activation site in monomeric sarcosine oxidase: role of Lys265 in catalysis.
Biochemistry. 2008 Sep 2;47(35):9124-35. doi: 10.1021/bi8008642. Epub 2008 Aug 12.
7
Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.
Biochemistry. 2008 Aug 19;47(33):8485-90. doi: 10.1021/bi801039d. Epub 2008 Jul 25.
9
How do enzymes activate oxygen without inactivating themselves?
Acc Chem Res. 2007 May;40(5):325-33. doi: 10.1021/ar6000507. Epub 2007 May 3.
10
Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions.
Acta Crystallogr D Biol Crystallogr. 2007 May;63(Pt 5):621-7. doi: 10.1107/S0907444907009961. Epub 2007 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验