Suppr超能文献

具有扩散的周期Lotka-Volterra竞争系统时间周期行波的存在性、唯一性和渐近稳定性

Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion.

作者信息

Zhao Guangyu, Ruan Shigui

机构信息

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA.

出版信息

J Math Pures Appl. 2011 Jun 1;96(6):627-671. doi: 10.1016/j.matpur.2010.11.005.

Abstract

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c() such that for each wave speed c ≤ c(), there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c() are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c().

摘要

我们研究了周期扩散的Lotka-Volterra竞争系统时间周期行波解的存在性、唯一性和渐近稳定性。在某些条件下,我们证明存在一个最大波速(c^),使得对于每个波速(c\leq c^),存在一个时间周期行波连接相应动力学系统的两个半平凡周期解。结果表明,这样的行波在平移意义下是唯一的,并且相对于其共动坐标系坐标是单调的。我们还表明,波速(c < c^)的行波解在某种意义下是渐近稳定的。此外,我们证明了对于非零波速(c > c^)不存在时间周期行波。

相似文献

3
Stability of traveling wave solutions for a nonlocal Lotka-Volterra model.
Math Biosci Eng. 2024 Jan;21(1):444-473. doi: 10.3934/mbe.2024020. Epub 2022 Dec 14.
8
Traveling Waves in Spatial SIRS Models.空间SIRS模型中的行波
J Dyn Differ Equ. 2014;26(1):143-164. doi: 10.1007/s10884-014-9348-3. Epub 2014 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验