Suppr超能文献

一个用于预测药用化合物药效团特征的数据库。

A database for the predicted pharmacophoric features of medicinal compounds.

作者信息

Daisy Pitchai, Singh Sanjeev Kumar, Vijayalakshmi Periyasamy, Selvaraj Chandrabose, Rajalakshmi Manikkam, Suveena Sukumaran

出版信息

Bioinformation. 2011 May 7;6(4):167-8. doi: 10.6026/97320630006167.

Abstract

UNLABELLED

Pharmacophore feature is defined by a set of chemical structure patterns having the active site of drug like molecule. Pharmacophore can be used to assist in building hypothesis about desirable chemical properties in drug molecule and hence it can be used to refine and modify drug candidates. We predicted the pharmacophoric features of 150 medicinal compounds from plants for anti-cancer, anti-carcinogenic, anti-diabetic, anti-microbial, and anti-oxidant. Estimation of pharmacophoric feature is necessary to ensure the optimal supramolecular interaction with a biological target and to trigger or block its biological response. We subsequently make this data available to open access using a database at the URL: http://www.hccbif.info/index.htm

AVAILABILITY

The database is available for free at http://www.hccbif.info/index.htm.

摘要

未标注

药效团特征由一组具有类药物分子活性位点的化学结构模式定义。药效团可用于辅助构建关于药物分子理想化学性质的假设,因此可用于优化和修饰候选药物。我们预测了150种植物药用化合物的药效团特征,这些化合物具有抗癌、抗致癌、抗糖尿病、抗微生物和抗氧化作用。估算药效团特征对于确保与生物靶点的最佳超分子相互作用以及触发或阻断其生物反应是必要的。随后,我们通过网址为http://www.hccbif.info/index.htm的数据库提供此数据以供开放获取。

可用性

该数据库可在http://www.hccbif.info/index.htm免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8a/3092953/fb5e77757f1c/97320630006167F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验