Choi Seung W, Gibbons Laura E, Crane Paul K
Northwestern University.
J Stat Softw. 2011 Mar 1;39(8):1-30. doi: 10.18637/jss.v039.i08.
Logistic regression provides a flexible framework for detecting various types of differential item functioning (DIF). Previous efforts extended the framework by using item response theory (IRT) based trait scores, and by employing an iterative process using group-specific item parameters to account for DIF in the trait scores, analogous to purification approaches used in other DIF detection frameworks. The current investigation advances the technique by developing a computational platform integrating both statistical and IRT procedures into a single program. Furthermore, a Monte Carlo simulation approach was incorporated to derive empirical criteria for various DIF statistics and effect size measures. For purposes of illustration, the procedure was applied to data from a questionnaire of anxiety symptoms for detecting DIF associated with age from the Patient-Reported Outcomes Measurement Information System.
逻辑回归为检测各类项目功能差异(DIF)提供了一个灵活的框架。以往的研究通过使用基于项目反应理论(IRT)的特质分数来扩展该框架,并采用一个使用特定组项目参数的迭代过程来解释特质分数中的DIF,这类似于其他DIF检测框架中使用的净化方法。当前的研究通过开发一个将统计程序和IRT程序集成到单个程序中的计算平台来推进这项技术。此外,还采用了蒙特卡罗模拟方法来推导各种DIF统计量和效应大小度量的经验标准。为了说明目的,该程序被应用于一份焦虑症状问卷的数据,以检测患者报告结局测量信息系统中与年龄相关的DIF。