Suppr超能文献

带有纳米线电极的血管内神经接口

Intravascular Neural Interface with Nanowire Electrode.

作者信息

Watanabe Hirobumi, Takahashi Hirokazu, Nakao Masayuki, Walton Kerry, Llinás Rodolfo R

机构信息

New York University, USA.

出版信息

Electron Commun Jpn. 2009 Jul;92(7):29-37. doi: 10.1002/ecj.10058.

Abstract

A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 10(3) to 10(4)) of neurons is an absolute prerequisite in developing an effective brain-machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis.

摘要

一种能够同时监测大量(例如,10³至10⁴个)神经元活动的微创电记录和刺激技术,是开发有效脑机接口的绝对前提条件。尽管有许多记录单个或多个神经元的优秀方法,但尚未有一种方法能够在行为实验动物或人类个体中接入大量细胞。脑血管实质是解决这一问题的一个有前景的候选者。有人提出[1, 2],通过血管系统将大量纳米线电极引入中枢神经系统以触及任何脑区可能是一种解决方案。在本研究中,我们为离体实验实现了这种微导管的设计。使用沃拉斯顿铂丝,我们设计了一种亚微米级电极并开发了一种制造方法。然后,在离体非洲爪蟾实验中,当电极穿过复杂的毛细血管床时,我们评估其在流体中的机械性能。此外,我们证明了在非洲爪蟾脊髓中进行血管内记录的可行性。

相似文献

1
Intravascular Neural Interface with Nanowire Electrode.
Electron Commun Jpn. 2009 Jul;92(7):29-37. doi: 10.1002/ecj.10058.
5
Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface.
Micromachines (Basel). 2024 Dec 26;16(1):21. doi: 10.3390/mi16010021.
6
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11.
7
Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording.
Polymers (Basel). 2017 Dec 8;9(12):690. doi: 10.3390/polym9120690.
9
Liquid Metal-Based Electrode Array for Neural Signal Recording.
Bioengineering (Basel). 2023 May 10;10(5):578. doi: 10.3390/bioengineering10050578.
10
Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
Nano Lett. 2018 May 9;18(5):2903-2911. doi: 10.1021/acs.nanolett.8b00087. Epub 2018 Apr 9.

引用本文的文献

1
Community perspectives regarding brain-computer interfaces: A cross-sectional study of community-dwelling adults in the UK.
PLOS Digit Health. 2025 Feb 5;4(2):e0000524. doi: 10.1371/journal.pdig.0000524. eCollection 2025 Feb.
2
Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface.
Micromachines (Basel). 2024 Dec 26;16(1):21. doi: 10.3390/mi16010021.
3
The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation.
J Neurointerv Surg. 2024 Nov 22;16(12):1237-1243. doi: 10.1136/jnis-2023-021296.
4
Making a case for endovascular approaches for neural recording and stimulation.
J Neural Eng. 2023 Jan 25;20(1):011001. doi: 10.1088/1741-2552/acb086.
6
Defining Surgical Terminology and Risk for Brain Computer Interface Technologies.
Front Neurosci. 2021 Mar 26;15:599549. doi: 10.3389/fnins.2021.599549. eCollection 2021.
8
Connecting the Brain to Itself through an Emulation.
Front Neurosci. 2017 Jun 30;11:373. doi: 10.3389/fnins.2017.00373. eCollection 2017.
10
A review of organic and inorganic biomaterials for neural interfaces.
Adv Mater. 2014 Mar 26;26(12):1846-85. doi: 10.1002/adma.201304496.

本文引用的文献

1
Brain-machine interfaces: past, present and future.
Trends Neurosci. 2006 Sep;29(9):536-46. doi: 10.1016/j.tins.2006.07.004. Epub 2006 Jul 21.
2
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
3
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
4
Classification of single MEG trials related to left and right index finger movements.
Clin Neurophysiol. 2006 Feb;117(2):430-9. doi: 10.1016/j.clinph.2005.10.024. Epub 2006 Jan 18.
5
Easy-to-prepare assembly array of Tungsten microelectrodes.
IEEE Trans Biomed Eng. 2005 May;52(5):952-6. doi: 10.1109/TBME.2005.845224.
6
Decoding the visual and subjective contents of the human brain.
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
7
Quantitative analysis of synchrotron radiation intravenous angiographic images.
Phys Med Biol. 2005 Feb 21;50(4):725-40. doi: 10.1088/0031-9155/50/4/011.
8
Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study.
J Neurosurg. 2004 Oct;101(4):676-81. doi: 10.3171/jns.2004.101.4.0676.
9
Inference of hand movements from local field potentials in monkey motor cortex.
Nat Neurosci. 2003 Dec;6(12):1253-4. doi: 10.1038/nn1158. Epub 2003 Nov 21.
10
Microvasculature of the olfactory organ in the Japanese monkey (Macaca fuscata fuscata).
Microsc Microanal. 2002 Jun;8(3):159-69. doi: 10.1017/s1431927602020081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验