Watanabe Hirobumi, Takahashi Hirokazu, Nakao Masayuki, Walton Kerry, Llinás Rodolfo R
New York University, USA.
Electron Commun Jpn. 2009 Jul;92(7):29-37. doi: 10.1002/ecj.10058.
A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 10(3) to 10(4)) of neurons is an absolute prerequisite in developing an effective brain-machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis.
一种能够同时监测大量(例如,10³至10⁴个)神经元活动的微创电记录和刺激技术,是开发有效脑机接口的绝对前提条件。尽管有许多记录单个或多个神经元的优秀方法,但尚未有一种方法能够在行为实验动物或人类个体中接入大量细胞。脑血管实质是解决这一问题的一个有前景的候选者。有人提出[1, 2],通过血管系统将大量纳米线电极引入中枢神经系统以触及任何脑区可能是一种解决方案。在本研究中,我们为离体实验实现了这种微导管的设计。使用沃拉斯顿铂丝,我们设计了一种亚微米级电极并开发了一种制造方法。然后,在离体非洲爪蟾实验中,当电极穿过复杂的毛细血管床时,我们评估其在流体中的机械性能。此外,我们证明了在非洲爪蟾脊髓中进行血管内记录的可行性。