Suppr超能文献

解读人类大脑的视觉及主观内容。

Decoding the visual and subjective contents of the human brain.

作者信息

Kamitani Yukiyasu, Tong Frank

机构信息

ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan.

出版信息

Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.

Abstract

The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their subjective contents.

摘要

人类神经成像技术读出一个人心理状态详细内容的潜力尚未得到充分探索。我们研究了能否从功能磁共振成像(fMRI)测量的人类大脑活动中解码边缘方向这一基本视觉特征的感知。使用统计算法对大脑状态进行分类,我们发现早期视觉区域的fMRI信号总体能够在个体试验中可靠地预测受试者所看到的八个刺激方向中的哪一个。此外,当受试者必须关注两个重叠的正交光栅中的一个时,基于特征的注意力会强烈地使总体活动偏向被关注的方向。这些结果表明,包括初级视觉皮层(V1)在内的早期视觉区域的fMRI活动模式包含能够可靠预测主观感知的详细方向信息。我们的方法为读出人类大脑中微调后的表征及其主观内容提供了一个框架。

相似文献

1
Decoding the visual and subjective contents of the human brain.
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
2
Transient attention enhances perceptual performance and FMRI response in human visual cortex.
Neuron. 2005 Feb 3;45(3):469-77. doi: 10.1016/j.neuron.2004.12.039.
3
Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
J Neurophysiol. 2017 Feb 1;117(2):818-835. doi: 10.1152/jn.00590.2016. Epub 2016 Nov 30.
4
Imaging orientation selectivity: decoding conscious perception in V1.
Nat Neurosci. 2005 May;8(5):541-2. doi: 10.1038/nn0505-541.
5
The representation of perceived angular size in human primary visual cortex.
Nat Neurosci. 2006 Mar;9(3):429-34. doi: 10.1038/nn1641. Epub 2006 Feb 5.
6
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
J Neurosci. 2017 Feb 1;37(5):1187-1196. doi: 10.1523/JNEUROSCI.2690-16.2016. Epub 2016 Dec 21.
7
Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
Brain Topogr. 2008 Dec;21(2):86-92. doi: 10.1007/s10548-008-0069-y. Epub 2008 Oct 9.
8
Decoding seen and attended motion directions from activity in the human visual cortex.
Curr Biol. 2006 Jun 6;16(11):1096-102. doi: 10.1016/j.cub.2006.04.003.
9
Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis.
Neuroimage. 2004 Mar;21(3):801-17. doi: 10.1016/j.neuroimage.2003.10.047.
10
The human visual cortex.
Annu Rev Neurosci. 2004;27:649-77. doi: 10.1146/annurev.neuro.27.070203.144220.

引用本文的文献

1
A Practical Guide to Identifying Robust Clusters in Neuroimaging Data.
Hum Brain Mapp. 2025 Sep;46(13):e70330. doi: 10.1002/hbm.70330.
4
Distinguishing the activity of adjacent somatosensory nuclei within the brainstem using 3T fMRI.
Imaging Neurosci (Camb). 2025 May 12;3. doi: 10.1162/imag_a_00581. eCollection 2025.
5
Cross-modal decoding of emotional expressions in fMRI-Cross-session and cross-sample replication.
Imaging Neurosci (Camb). 2024 Sep 23;2. doi: 10.1162/imag_a_00289. eCollection 2024.
6
Natural sounds can be reconstructed from human neuroimaging data using deep neural network representation.
PLoS Biol. 2025 Jul 23;23(7):e3003293. doi: 10.1371/journal.pbio.3003293. eCollection 2025 Jul.
8
Importance of the early visual cortex and the lateral occipito-temporal cortex for the self-hand specific perspective process.
Neuroimage Rep. 2021 Aug 20;1(4):100046. doi: 10.1016/j.ynirp.2021.100046. eCollection 2021 Dec.
10
Asymmetric representation of symmetric semantic information in the human brain.
Neuroimage Rep. 2025 Feb 9;5(1):100243. doi: 10.1016/j.ynirp.2025.100243. eCollection 2025 Mar.

本文引用的文献

1
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
2
Orientation-specific adaptation in human visual cortex.
J Neurosci. 2003 Sep 24;23(25):8781-7. doi: 10.1523/JNEUROSCI.23-25-08781.2003.
3
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
4
Visual attention: the where, what, how and why of saliency.
Curr Opin Neurobiol. 2003 Aug;13(4):428-32. doi: 10.1016/s0959-4388(03)00105-3.
5
Patterns of activity in the categorical representations of objects.
J Cogn Neurosci. 2003 Jul 1;15(5):704-17. doi: 10.1162/089892903322307429.
7
Primary visual cortex and visual awareness.
Nat Rev Neurosci. 2003 Mar;4(3):219-29. doi: 10.1038/nrn1055.
8
Connecting cortex to machines: recent advances in brain interfaces.
Nat Neurosci. 2002 Nov;5 Suppl:1085-8. doi: 10.1038/nn947.
9
Global effects of feature-based attention in human visual cortex.
Nat Neurosci. 2002 Jul;5(7):631-2. doi: 10.1038/nn876.
10
The organization of orientation selectivity throughout macaque visual cortex.
Cereb Cortex. 2002 Jun;12(6):647-62. doi: 10.1093/cercor/12.6.647.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验