Suppr超能文献

衰老过程中端粒DNA的丢失可能使细胞易患癌症(综述)。

Loss of telomeric DNA during aging may predispose cells to cancer (review).

作者信息

Shay J, Wright W, Werbin H

出版信息

Int J Oncol. 1993 Oct;3(4):559-63. doi: 10.3892/ijo.3.4.559.

Abstract

In normal human somatic cells, gradual shortening of telomeres may activate the complex cascade of molecular events known as cellular senescence. Experimental evidence from our laboratory suggests that cellular mortality is regulated by two separate mechanisms that we have termed mortality stage 1 (M1) and mortality stage 2 (M2). In mammary epithelial cells, the M1 mechanism involves de-regulation of p53 whereas in fibroblasts both the retinoblastoma (Rb) and p53 gene products are implicated. Cells that overcome the function of these antiproliferative proteins (M1 controls) continue to divide until a second entirely independent mechanism, M2 is induced. As somatic cells age they gradually lose telomeric sequences at the termini of their chromosomes, a process that continues during the extended lifespan period between M1 and M2. Immortal and cancer cells, as well as cells that maintain telomere length (e.g. germ cells), express telomerase, a ribonucleoprotein which maintains (stabilizes) telomere length by synthesizing TTAGGG repeats. Because normal human somatic cells and cells prior to M2 do not express telomerase, we propose that the M2 mechanism involves either the direct or indirect induction of telomerase activity. In order for cells to overcome senescence and become immortal, they must first escape the checkpoints that limit the proliferative capacity of normal cells, the MI and M2 controls (a very rare event). However, the probability of immortalization and that of tumorigenesis increases with age and we propose telomere shortening and reactivation of telomerase are important components in these processes. Once immortal, cells can then follow many pathways that result in the acquisition and progression of cancer.

摘要

在正常人体体细胞中,端粒的逐渐缩短可能会激活一系列复杂的分子事件,即细胞衰老。我们实验室的实验证据表明,细胞死亡受两种独立机制的调控,我们将其称为死亡阶段1(M1)和死亡阶段2(M2)。在乳腺上皮细胞中,M1机制涉及p53的失调,而在成纤维细胞中,视网膜母细胞瘤(Rb)和p53基因产物都与之相关。克服这些抗增殖蛋白(M1控制)功能的细胞会继续分裂,直到诱导出第二种完全独立的机制M2。随着体细胞衰老,它们会逐渐在染色体末端丢失端粒序列,这个过程在M1和M2之间的延长寿命期内持续进行。永生细胞、癌细胞以及维持端粒长度的细胞(如生殖细胞)表达端粒酶,这是一种核糖核蛋白,通过合成TTAGGG重复序列来维持(稳定)端粒长度。由于正常人体体细胞和处于M2之前的细胞不表达端粒酶,我们推测M2机制涉及端粒酶活性的直接或间接诱导。为了使细胞克服衰老并变得永生,它们必须首先逃脱限制正常细胞增殖能力的关卡,即M1和M2控制(这是一个非常罕见的事件)。然而,永生化和肿瘤发生的概率会随着年龄增长而增加,我们认为端粒缩短和端粒酶的重新激活是这些过程中的重要组成部分。一旦永生,细胞就可以沿着许多导致癌症发生和发展的途径发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验