Suppr超能文献

采用氢/氘交换-LC-MS 方法来表征肝素硫酸 C5-差向异构酶的作用。

Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase.

机构信息

Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Anal Bioanal Chem. 2011 Jul;401(1):237-44. doi: 10.1007/s00216-011-5087-z. Epub 2011 May 15.

Abstract

Heparan sulfate (HS) proteoglycans regulate a number of biological functions in many systems. Most of the functions of HS are attributed to its unique structure, consisting of sulfated and non-sulfated domains, arising from the differential presence of iduronyl and glucuronyl residues along the polysaccharide chain. A single glucuronyl C5-epimerase enzyme acts on HS precursors, converts glucuronyl residues into iduronyl residues, and modulates subsequent biosynthetic steps in vivo. Previously, the ratios of non-sulfated epimers within the polysaccharide chain have been calculated by resolving radiolabeled GlcA-(A)Man(R) and IdoA-(A)Man(R) disaccharides using a tedious paper chromatography technique. This radioactive assay, based on measuring either the release or incorporation of (3)H at C5 carbon of uronyl residues of (3)H-labeled HS precursor substrate, has been in use over three decades to characterize the action of HS C5-epimerase. We have developed a non-radioactive assay to estimate the epimerase activity through resolving GlcA-(A)Man(R) and IdoA-(A)Man(R) disaccharides on high-performance liquid chromatography in conjunction with hydrogen/deuterium exchange upon epimerization protocol-liquid chromatography mass spectrometry (DEEP-LC-MS). Utilizing this new, non-radioactive-based assay, DEEP-LC-MS, we were able to determine the extent of both forward and reverse reactions on the same substrate catalyzed by C5-epimerase. The results from this study also provide insights into the action of C5-epimerase and provide an opportunity to delineate snapshots of biosynthetic events that occur during the HSPG assembly in the Golgi.

摘要

硫酸乙酰肝素(HS)蛋白聚糖在许多系统中调节许多生物学功能。HS 的大多数功能归因于其独特的结构,由带有硫酸和非硫酸结构域的多糖链组成,这是由于在多糖链上存在差向的艾杜糖醛酸和葡萄糖醛酸残基。一种单一的葡萄糖醛酸 C5-差向异构酶作用于 HS 前体,将葡萄糖醛酸残基转化为艾杜糖醛酸残基,并调节体内随后的生物合成步骤。以前,通过使用繁琐的纸层析技术解析放射性标记的 GlcA-(A)Man(R) 和 IdoA-(A)Man(R) 二糖,计算多糖链中非硫酸差向异构体的比例。这种基于放射性的测定方法,通过测量(3)H 在(3)H 标记的 HS 前体底物中尿苷残基的 C5 碳上的释放或掺入,已经使用了三十多年来表征 HS C5-差向异构酶的作用。我们开发了一种非放射性测定法,通过在差向异构化方案-高效液相色谱-质谱(DEEP-LC-MS)中解析 GlcA-(A)Man(R) 和 IdoA-(A)Man(R) 二糖,并结合氢/氘交换,通过高效液相色谱来估计差向异构酶的活性。利用这种新的非放射性测定法,我们能够在相同的 C5-差向异构酶催化的底物上确定正向和反向反应的程度。这项研究的结果还提供了对 C5-差向异构酶作用的深入了解,并为描绘高尔基体内 HSPG 组装过程中发生的生物合成事件的快照提供了机会。

相似文献

1
Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase.
Anal Bioanal Chem. 2011 Jul;401(1):237-44. doi: 10.1007/s00216-011-5087-z. Epub 2011 May 15.
3
Polysaccharide Sequence Influences the Specificity and Catalytic Activity of Glucuronyl C5-Epimerase.
Biochemistry. 2020 Jul 14;59(27):2576-2584. doi: 10.1021/acs.biochem.0c00419. Epub 2020 Jun 29.
7
Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.
Nat Chem Biol. 2006 Apr;2(4):195-6. doi: 10.1038/nchembio777. Epub 2006 Mar 12.
8
Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6760-6765. doi: 10.1073/pnas.1818333116. Epub 2019 Mar 14.

引用本文的文献

1
Elucidating the unusual reaction kinetics of D-glucuronyl C5-epimerase.
Glycobiology. 2020 Oct 21;30(11):847-858. doi: 10.1093/glycob/cwaa035.
2
Heavy Heparin: A Stable Isotope-Enriched, Chemoenzymatically-Synthesized, Poly-Component Drug.
Angew Chem Int Ed Engl. 2019 Apr 23;58(18):5962-5966. doi: 10.1002/anie.201900768. Epub 2019 Apr 1.
5
Disaccharide analysis of glycosaminoglycans using hydrophilic interaction chromatography and mass spectrometry.
Anal Chem. 2013 Jan 15;85(2):1138-45. doi: 10.1021/ac3030448. Epub 2013 Jan 3.
7
Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis.
J Biol Chem. 2012 Jun 15;287(25):20996-1002. doi: 10.1074/jbc.M112.359885. Epub 2012 Apr 23.
8
Recent advances in sulfotransferase enzyme activity assays.
Anal Bioanal Chem. 2012 Jun;403(6):1491-500. doi: 10.1007/s00216-012-5944-4. Epub 2012 Apr 12.

本文引用的文献

1
Applications of isotopes in advancing structural and functional heparanomics.
Anal Bioanal Chem. 2011 Jan;399(2):559-70. doi: 10.1007/s00216-010-4166-x. Epub 2010 Sep 14.
3
Chemical Tumor Biology of Heparan Sulfate Proteoglycans.
Curr Chem Biol. 2010 Jan 1;4(1):20-31. doi: 10.2174/187231310790226206.
4
Using engineered 2-O-sulfotransferase to determine the activity of heparan sulfate C5-epimerase and its mutants.
J Biol Chem. 2010 Apr 9;285(15):11106-13. doi: 10.1074/jbc.M109.081059. Epub 2010 Jan 29.
5
Insights into the mechanism of separation of heparin and heparan sulfate disaccharides by reverse-phase ion-pair chromatography.
J Chromatogr A. 2010 Jan 22;1217(4):479-88. doi: 10.1016/j.chroma.2009.11.064. Epub 2009 Dec 3.
6
Preparation and characterization of (15)N-enriched, size-defined heparan sulfate precursor oligosaccharides.
Carbohydr Res. 2010 Jan 26;345(2):250-6. doi: 10.1016/j.carres.2009.10.024. Epub 2009 Nov 3.
7
Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.
Nat Chem Biol. 2006 Apr;2(4):195-6. doi: 10.1038/nchembio777. Epub 2006 Mar 12.
8
Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide.
Nat Biotechnol. 2003 Nov;21(11):1343-6. doi: 10.1038/nbt885. Epub 2003 Oct 5.
9
Chemoenzymatic synthesis of classical and non-classical anticoagulant heparan sulfate polysaccharides.
J Biol Chem. 2003 Dec 26;278(52):52613-21. doi: 10.1074/jbc.M305029200. Epub 2003 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验