Suppr超能文献

肿瘤坏死因子受体 1(TNFR1 PLAD)天然 N 端前配体组装结构域的表达与纯化及初步活性测定。

Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination.

机构信息

School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.

出版信息

Protein J. 2011 Apr;30(4):281-9. doi: 10.1007/s10930-011-9330-4.

Abstract

A domain at the NH(2) terminal (N-terminal) of tumor necrosis factor receptor (TNFR) termed the pre-ligand binding assembly domain (PLAD). The finding that PLAD can mediate a selective TNFR assembly in previously researches provides a novel target to the prevention of TNFR signaling in immune-mediated inflammatory diseases (IMID). In this study, a natural N-terminal TNFR1 PLAD was obtained for the first time through the methods of GST-tag fusion protein expression and enterokinase cleavage. After purification with a Q Sepharose Fast Flow column, a natural N-terminal TNFR1 PLAD which purity was up to 95%, was obtained and was identified using Nano LC-ECI-MS/MS. Secondary structure analysis of PLAD was carried out using circular dichroism spectra (CD). After that, the TNFR1 PLAD in vitro anti-TNFα activity and the specific TNFR1 affinity were determined. The results proved that the natural N-terminal TNFR1 PLAD can selectively inhibit TNFα bioactivity mainly through TNFR1. It infers an effective and safe strategy for treating variety of IMID with a low risk of side effects in future.

摘要

肿瘤坏死因子受体(TNFR)NH2 末端(N 端)的一个结构域,称为前配体结合组装域(PLAD)。先前的研究发现,PLAD 可以介导 TNFR 的选择性组装,为预防免疫介导的炎症性疾病(IMID)中的 TNFR 信号提供了一个新的靶点。在这项研究中,我们首次通过 GST 标签融合蛋白表达和肠激酶切割的方法获得了天然的 N 端 TNFR1 PLAD。通过 Q Sepharose Fast Flow 柱纯化后,获得了纯度高达 95%的天然 N 端 TNFR1 PLAD,并通过纳升液相色谱-电喷雾串联质谱(Nano LC-ECI-MS/MS)进行鉴定。使用圆二色光谱(CD)进行 PLAD 的二级结构分析。然后,测定了 TNFR1 PLAD 的体外抗 TNFα 活性和 TNFR1 的特异性亲和力。结果表明,天然的 N 端 TNFR1 PLAD 可以选择性地抑制 TNFα 的生物活性,主要通过 TNFR1。这为未来治疗多种 IMID 提供了一种有效且安全的策略,副作用风险低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验