Conte Cécile, Masson Catherine, Arnoux Pierre-Jean
Laboratoire de Biomécanique Appliquée, IFSTTAR/Université de Méditerranée, Bd P. Dramard, 13 016 Marseille, France.
Comput Methods Biomech Biomed Engin. 2012;15(9):993-9. doi: 10.1080/10255842.2011.569884. Epub 2011 May 27.
To prevent traumas to abdominal organs, the selection of efficient safety devices should be based on a detailed knowledge of injury mechanisms and related injury criteria. In this sense, finite element (FE) simulation coupled with experiment could be a valuable tool to provide a better understanding of the behaviour of internal organs under crash conditions. This work proposes a methodology based on inverse analysis which combines exploration process optimisation and robustness study to obtain mechanical behaviour of the complex structure of the liver through FE simulation. The liver characterisation was based on Mooney-Rivlin hyperelastic behaviour law considering whole liver structure under uniform quasi-static compression. With the global method used, the model fits experimental data. The variability induced by modelling parameters is quantified within a reasonable time.
为防止腹部器官受到创伤,高效安全装置的选择应基于对损伤机制和相关损伤标准的详细了解。从这个意义上说,有限元(FE)模拟与实验相结合可能是一个有价值的工具,有助于更好地理解碰撞条件下内部器官的行为。这项工作提出了一种基于逆分析的方法,该方法结合了探索过程优化和稳健性研究,以通过有限元模拟获得肝脏复杂结构的力学行为。肝脏特性基于Mooney-Rivlin超弹性行为定律,考虑了整个肝脏结构在均匀准静态压缩下的情况。使用全局方法时,该模型与实验数据拟合。建模参数引起的变异性在合理时间内得到量化。