Suppr超能文献

使用均方根差和一致性相关系数检验区间水平数据的可靠性。

Examining the reliability of interval level data using root mean square differences and concordance correlation coefficients.

机构信息

Department of Psychology, University of Nevada, Las Vegas, 4505 Maryland Parkway, P.O. Box 455030, Las Vegas, NV 89154-5030, USA.

出版信息

Psychol Methods. 2012 Jun;17(2):294-308. doi: 10.1037/a0023351. Epub 2011 May 16.

Abstract

This article introduces new statistics for evaluating score consistency. Psychologists usually use correlations to measure the degree of linear relationship between 2 sets of scores, ignoring differences in means and standard deviations. In medicine, biology, chemistry, and physics, a more stringent criterion is often used: the extent to which scores are identically equal. For each test taker (or other unit of measurement), the difference between the 2 scores is calculated. The root mean square difference (RMSD) represents the average change from 1 set of scores to the other, and the concordance correlation coefficient (CCC) rescales this coefficient to have a maximum value of 1. This article shows the relationship of the RMSD and CCC to the intraclass correlation coefficients, product-moment correlation, and standard error of measurement. Finally, this article adapts the RMSD and the CCC for linear, consistency, and absolute definitions of agreement.

摘要

本文介绍了评估评分一致性的新统计量。心理学家通常使用相关系数来衡量两组分数之间的线性关系,而忽略了均值和标准差的差异。在医学、生物学、化学和物理学中,通常使用更严格的标准:分数相同的程度。对于每个考生(或其他测量单位),计算两个分数之间的差异。均方根差(RMSD)表示从一组分数到另一组分数的平均变化,而协调相关系数(CCC)重新调整此系数,使其最大值为 1。本文展示了 RMSD 和 CCC 与组内相关系数、积差相关和测量标准误差的关系。最后,本文针对线性、一致性和绝对一致性定义,对 RMSD 和 CCC 进行了修正。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验