Department of Psychology, University of Nevada, Las Vegas, 4505 Maryland Parkway, P.O. Box 455030, Las Vegas, NV 89154-5030, USA.
Psychol Methods. 2012 Jun;17(2):294-308. doi: 10.1037/a0023351. Epub 2011 May 16.
This article introduces new statistics for evaluating score consistency. Psychologists usually use correlations to measure the degree of linear relationship between 2 sets of scores, ignoring differences in means and standard deviations. In medicine, biology, chemistry, and physics, a more stringent criterion is often used: the extent to which scores are identically equal. For each test taker (or other unit of measurement), the difference between the 2 scores is calculated. The root mean square difference (RMSD) represents the average change from 1 set of scores to the other, and the concordance correlation coefficient (CCC) rescales this coefficient to have a maximum value of 1. This article shows the relationship of the RMSD and CCC to the intraclass correlation coefficients, product-moment correlation, and standard error of measurement. Finally, this article adapts the RMSD and the CCC for linear, consistency, and absolute definitions of agreement.
本文介绍了评估评分一致性的新统计量。心理学家通常使用相关系数来衡量两组分数之间的线性关系,而忽略了均值和标准差的差异。在医学、生物学、化学和物理学中,通常使用更严格的标准:分数相同的程度。对于每个考生(或其他测量单位),计算两个分数之间的差异。均方根差(RMSD)表示从一组分数到另一组分数的平均变化,而协调相关系数(CCC)重新调整此系数,使其最大值为 1。本文展示了 RMSD 和 CCC 与组内相关系数、积差相关和测量标准误差的关系。最后,本文针对线性、一致性和绝对一致性定义,对 RMSD 和 CCC 进行了修正。