Suppr超能文献

在生理高压力和盐浓度下吸附氢化大豆磷脂酰胆碱(HSPC)囊泡之间的相互作用。

Interactions between adsorbed hydrogenated soy phosphatidylcholine (HSPC) vesicles at physiologically high pressures and salt concentrations.

机构信息

Department of Materials and Interfaces, Weizmann Institute, Rehovot, Israel.

出版信息

Biophys J. 2011 May 18;100(10):2403-11. doi: 10.1016/j.bpj.2011.03.061.

Abstract

Using a surface force balance, we measured normal and shear interactions as a function of surface separation between layers of hydrogenated soy phosphatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion at physiologically high salt concentrations (0.15 M NaNO₃). Cryo-scanning electron microscopy shows that each surface is coated by a close-packed HSPC-SUV layer with an overlayer of liposomes on top. A clear attractive interaction between the liposome layers is seen upon approach and separation, followed by a steric repulsion upon further compression. The shear forces reveal low friction coefficients (μ = 0.008-0.0006) up to contact pressures of at least 6 MPa, comparable to those observed in the major joints. The spread in μ-values may be qualitatively accounted for by different local liposome structure at different contact points, suggesting that the intrinsic friction of the HSPC-SUV layers at this salt concentration is closer to the lower limit (μ = ~0.0006). This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication.

摘要

我们使用表面力天平,测量了在生理高盐浓度(0.15 M NaNO₃)下从分散体中吸附的氢化大豆卵磷脂(HSPC)小单层囊泡(SUV)的层间表面分离的法向和剪切相互作用。冷冻扫描电子显微镜显示,每个表面都被紧密堆积的 HSPC-SUV 层覆盖,上面覆盖着一层脂质体。在接近和分离时,可以看到脂质体层之间明显的吸引力相互作用,然后在进一步压缩时会产生空间排斥。剪切力显示,摩擦系数(μ = 0.008-0.0006)非常低,直至接触压力至少为 6 MPa,与主要关节中观察到的相似。μ 值的分散可能可以通过不同接触点处不同的局部脂质体结构来定性解释,这表明在该盐浓度下 HSPC-SUV 层的固有摩擦力更接近下限(μ = ~0.0006)。这种低摩擦归因于水合膦酰胆碱头部暴露在外脂质体的每个脂质体的外表面的水化润滑机制,这为磷脂可能在生物润滑中发挥重要作用的假设提供了支持。

相似文献

2
Liposomes as lubricants: beyond drug delivery.
Chem Phys Lipids. 2012 May;165(4):374-81. doi: 10.1016/j.chemphyslip.2011.11.007. Epub 2011 Nov 19.
3
Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
Acta Biomater. 2017 Sep 1;59:283-292. doi: 10.1016/j.actbio.2017.06.043. Epub 2017 Jun 29.
4
5
Effect of glucosamine sulfate on surface interactions and lubrication by hydrogenated soy phosphatidylcholine (HSPC) liposomes.
Biomacromolecules. 2014 Nov 10;15(11):4178-86. doi: 10.1021/bm501189g. Epub 2014 Oct 8.
6
Origins of extreme boundary lubrication by phosphatidylcholine liposomes.
Biomaterials. 2013 Jul;34(22):5465-75. doi: 10.1016/j.biomaterials.2013.03.098. Epub 2013 Apr 23.
7
Effects of Hyaluronan Molecular Weight on the Lubrication of Cartilage-Emulating Boundary Layers.
Biomacromolecules. 2020 Oct 12;21(10):4345-4354. doi: 10.1021/acs.biomac.0c01151. Epub 2020 Sep 24.
8
Normal and Frictional Interactions between Liposome-Bearing Biomacromolecular Bilayers.
Biomacromolecules. 2016 Aug 8;17(8):2591-602. doi: 10.1021/acs.biomac.6b00614. Epub 2016 Jul 28.
10
Normal and shear forces between boundary sphingomyelin layers under aqueous conditions.
Soft Matter. 2020 Apr 29;16(16):3973-3980. doi: 10.1039/d0sm00215a.

引用本文的文献

2
Liposome-Based Interventions in Knee Osteoarthritis.
Small. 2025 Apr;21(17):e2410060. doi: 10.1002/smll.202410060. Epub 2025 Mar 27.
3
Cell-inspired, massive electromodulation of friction via transmembrane fields across lipid bilayers.
Nat Mater. 2024 Dec;23(12):1720-1727. doi: 10.1038/s41563-024-01926-9. Epub 2024 Jun 24.
4
Dehydration does not affect lipid-based hydration lubrication.
Nanoscale. 2022 Dec 15;14(48):18241-18252. doi: 10.1039/d2nr04799c.
6
Synovial Extracellular Vesicles: Structure and Role in Synovial Fluid Tribological Performances.
Int J Mol Sci. 2022 Oct 9;23(19):11998. doi: 10.3390/ijms231911998.
7
Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication.
Polymers (Basel). 2022 Jul 3;14(13):2724. doi: 10.3390/polym14132724.
8
Thermal Friction Enhancement in Zwitterionic Monolayers.
J Phys Chem C Nanomater Interfaces. 2022 Feb 10;126(5):2797-2805. doi: 10.1021/acs.jpcc.1c09542. Epub 2022 Feb 1.

本文引用的文献

1
Reduction in anterior shear forces on the L 4L 5 disc by the lumbar musculature.
Clin Biomech (Bristol). 1991 May;6(2):88-96. doi: 10.1016/0268-0033(91)90005-B.
2
Liposomes act as effective biolubricants for friction reduction in human synovial joints.
Langmuir. 2010 Jan 19;26(2):1107-16. doi: 10.1021/la9024712.
3
Lubrication at physiological pressures by polyzwitterionic brushes.
Science. 2009 Mar 27;323(5922):1698-701. doi: 10.1126/science.1169399.
4
Conceptualisation of articular cartilage as a giant reverse micelle: a hypothetical mechanism for joint biocushioning and lubrication.
Biosystems. 2008 Dec;94(3):193-201. doi: 10.1016/j.biosystems.2008.05.028. Epub 2008 Jul 31.
5
Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces.
Langmuir. 2008 Aug 19;24(16):8765-71. doi: 10.1021/la8005234. Epub 2008 Jul 12.
6
Strong repulsive interactions in polyelectrolyte-liposome clusters close to the isoelectric point: a sign of an arrested state.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061403. doi: 10.1103/PhysRevE.76.061403. Epub 2007 Dec 26.
7
Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+.
Eur Phys J E Soft Matter. 2007 Oct;24(2):201-10. doi: 10.1140/epje/i2007-10231-3. Epub 2007 Nov 14.
8
Lateral nanomechanics of cartilage aggrecan macromolecules.
Biophys J. 2007 Feb 15;92(4):1384-98. doi: 10.1529/biophysj.106.091397. Epub 2006 Dec 1.
9
Boundary lubrication under water.
Nature. 2006 Nov 9;444(7116):191-4. doi: 10.1038/nature05196.
10
The structure of zwitterionic phosphocholine surfactant monolayers.
Langmuir. 2006 Jun 20;22(13):5825-32. doi: 10.1021/la053316z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验