Suppr超能文献

作为目标的生态学和进化:新型生态进化药物和策略对抗抗生素耐药性的必要性。

Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance.

机构信息

Department of Microbiology, Institute Ramón and Cajal for Health Research (IRYCIS), CIBER Research Network in Epidemiology and Public Health (CIBERESP), Ramón y Cajal University Hospital, Madrid, Spain.

出版信息

Antimicrob Agents Chemother. 2011 Aug;55(8):3649-60. doi: 10.1128/AAC.00013-11. Epub 2011 May 16.

Abstract

In recent years, the explosive spread of antibiotic resistance determinants among pathogenic, commensal, and environmental bacteria has reached a global dimension. Classical measures trying to contain or slow locally the progress of antibiotic resistance in patients on the basis of better antibiotic prescribing policies have clearly become insufficient at the global level. Urgent measures are needed to directly confront the processes influencing antibiotic resistance pollution in the microbiosphere. Recent interdisciplinary research indicates that new eco-evo drugs and strategies, which take ecology and evolution into account, have a promising role in resistance prevention, decontamination, and the eventual restoration of antibiotic susceptibility. This minireview summarizes what is known and what should be further investigated to find drugs and strategies aiming to counteract the "four P's," penetration, promiscuity, plasticity, and persistence of rapidly spreading bacterial clones, mobile genetic elements, or resistance genes. The term "drug" is used in this eco-evo perspective as a tool to fight resistance that is able to prevent, cure, or decrease potential damage caused by antibiotic resistance, not necessarily only at the individual level (the patient) but also at the ecological and evolutionary levels. This view offers a wealth of research opportunities for science and technology and also represents a large adaptive challenge for regulatory agencies and public health officers. Eco-evo drugs and interventions constitute a new avenue for research that might influence not only antibiotic resistance but the maintenance of a healthy interaction between humans and microbial systems in a rapidly changing biosphere.

摘要

近年来,抗生素耐药决定因素在病原性、共生性和环境性细菌中的爆炸性传播已经达到了全球性的程度。经典的措施试图在全球范围内通过更好的抗生素处方政策来遏制或减缓患者中抗生素耐药性的进展,但这些措施显然已经不够了。需要采取紧急措施直接应对影响微生物区抗生素耐药污染的过程。最近的跨学科研究表明,考虑到生态学和进化的新型生态进化药物和策略在预防耐药性、去污和最终恢复抗生素敏感性方面具有广阔的前景。这篇综述总结了已知的知识和需要进一步研究的内容,以寻找旨在对抗快速传播的细菌克隆、移动遗传元件或耐药基因的“四个 P”(穿透、混杂、可塑性和持久性)的药物和策略。在这种生态进化的观点中,“药物”一词是指一种能够预防、治疗或减少抗生素耐药性潜在损害的工具,不一定仅在个体水平(患者),而且还在生态和进化水平上。这种观点为科学技术提供了丰富的研究机会,也代表了监管机构和公共卫生官员面临的巨大适应性挑战。生态进化药物和干预措施为研究提供了一个新途径,这不仅可能影响抗生素耐药性,还可能影响人类与微生物系统在快速变化的生物圈中的健康互动。

相似文献

3
Evolution and ecology of antibiotic resistance genes.抗生素抗性基因的进化与生态学
FEMS Microbiol Lett. 2007 Jun;271(2):147-61. doi: 10.1111/j.1574-6968.2007.00757.x. Epub 2007 May 8.
4
Counteracting antibiotic resistance: breaking barriers among antibacterial strategies.对抗抗生素耐药性:打破抗菌策略之间的障碍。
Expert Opin Ther Targets. 2014 Aug;18(8):851-61. doi: 10.1517/14728222.2014.925881. Epub 2014 May 31.
5
Antibiotic resistance in the wild: an eco-evolutionary perspective.野生环境中的抗生素耐药性:生态进化视角
Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712). doi: 10.1098/rstb.2016.0039.

引用本文的文献

5
Sub-inhibitory antibiotic treatment selects for enhanced metabolic efficiency.亚抑菌抗生素处理选择增强代谢效率。
Microbiol Spectr. 2024 Feb 6;12(2):e0324123. doi: 10.1128/spectrum.03241-23. Epub 2024 Jan 16.
7
What are the missing pieces needed to stop antibiotic resistance?需要哪些缺失的部分来阻止抗生素耐药性?
Microb Biotechnol. 2023 Oct;16(10):1900-1923. doi: 10.1111/1751-7915.14310. Epub 2023 Jul 7.

本文引用的文献

6
Predictions: evolutionary trajectories and planet medicine.预测:进化轨迹与行星医学
Microb Biotechnol. 2009 Mar;2(2):130-2. doi: 10.1111/j.1751-7915.2009.00090_3.x.
9
Lateral genetic transfer and the construction of genetic exchange communities.侧向基因转移与遗传交流群体的构建。
FEMS Microbiol Rev. 2011 Sep;35(5):707-35. doi: 10.1111/j.1574-6976.2010.00261.x. Epub 2011 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验