Yamada T, Takeuchi Y, Komori N, Kobayashi H, Sakai Y, Hotta Y, Matsumoto H
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.
Science. 1990 Apr 27;248(4954):483-6. doi: 10.1126/science.2158671.
The gene encoding the 49-kilodalton protein that undergoes light-induced phosphorylation in the Drosophila photoreceptor has been isolated and characterized. The encoded protein has 401 amino acid residues and a molecular mass of 44,972 daltons, and it shares approximately 42 percent amino acid sequence identity with arrestin (S-antigen), which has been proposed to quench the light-induced cascade of guanosine 3',5'-monophosphate hydrolysis in vertebrate photoreceptors. Unlike the 49-kilodalton protein, however, arrestin, which appears to bind to phosphorylated rhodopsin, has not itself been reported to undergo phosphorylation. In vitro, Ca2+ was the only agent found that would stimulate the phosphorylation of the 49-kilodalton protein. The phosphorylation of this arrestin-like protein in vivo may therefore be triggered by a Ca2+ signal that is likely to be regulated by light-activated phosphoinositide-specific phospholipase C.