Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.
PLoS One. 2011 May 11;6(5):e19671. doi: 10.1371/journal.pone.0019671.
Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR) markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1)s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information can assist in biodiversity assessment by helping detect novel taxa and/or define species boundaries.
红树林生态系统的生物多样性难以评估,至少部分原因是缺乏基于形态学的物种记录的遗传验证。一方面,自然杂交作为新基因组合的来源和物种形成的机制,在进化中起着重要作用。然而,另一方面,反复的基因渗入允许物种之间的基因流动,并可能逆转物种形成所需的种群遗传分化过程。为了了解杂交的动态进化后果,本研究在种群水平上检查了杂种和亲本物种的基因组结构。在印度洋-西太平洋地区,木榄属是主要的红树林属之一,其物种分布范围广泛重叠。报道称,在同域分布的红树和角果木之间存在形态中间型,是角果木的一个变种或一个新的杂交种,Bruguiera × rhynchopetala。然而,杂交的方向和基因渗入的程度尚不清楚。在木榄属和角果木属中发现了大量的物种特异性的简单重复序列间扩增多态性(ISSR)标记,Bruguiera × rhynchopetala 的加性 ISSR 分析确定了其杂交状态,并确定了其亲本来源。主坐标分析中杂种个体的分布程度以及 NewHybrids 分析的结果表明,Bruguiera × rhynchopetala 除了 F(1)代之外,还包含不同世代的渐渗体。基于核和叶绿体序列,Bruguiera × rhynchopetala 与木榄属之间的高遗传相关性表明,优先与木榄属发生杂种回交。我们得出结论,Bruguiera × rhynchopetala 尚未进化为一个初始杂交种,其持续存在可以通过反复的杂交和基因渗入来解释。基因组数据为红树林植物的杂交动态提供了深入的了解。这些信息可以通过帮助检测新的分类单元和/或定义物种边界来协助生物多样性评估。