Suppr超能文献

2-羟丙基-β-环糊精稳定亲水 C60 纳米颗粒的形成。

Formation of stable hydrophilic C60 nanoparticles by 2-hydroxypropyl-β-cyclodextrin.

机构信息

Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.

出版信息

Mol Pharm. 2011 Aug 1;8(4):1276-84. doi: 10.1021/mp200204v. Epub 2011 Jun 1.

Abstract

A number of papers have reported that the large cavity of γ-CyD is favorable for inclusion of C(60) and forms a 1:2 (C(60):γ-CyD) complex, whereas it is thought to be difficult for β-CyD to form a complex at the molecular level. This is because the cavity size of β-CyD (0.78 nm) is smaller than the van der Waals diameter of C(60) (1.0 nm). In this paper, we will report on the formation of the stable C(60) nanoparticles by the hydrophilic 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) layer through weak interaction on the surface of the nanoparticles. C(60) was coground with β-CyD, γ-CyD or HP-β-CyD mainly in a 1:2 molar ratio by an automatic magnetic agitating mortar, the coground powders were dispersed in water, and the resulting solutions were filtered through a pore size of 0.8 μm filter. The γ-CyD and HP-β-CyD systems gave transparent colloidal solutions consisting of C(60)/CyD nanoparticles with the size lower than 100 nm, with high yields (about 100%). The C(60)/HP-β-CyD nanoparticles are physically stable, keeping a small size for more than 28 days, whereas the γ-CyD nanoparticles are readily aggregated to form large particles (>800 nm). Solid and liquid NMR spectroscopic studies including measurements of spin-lattice relaxation times indicated that C(60) interacted with γ-CyD and HP-β-CyD in the solid and colloidal solutions. When compared with the γ-CyD nanoparticles, adsorption studies of a hydrophobic dye on the surface of C(60)/CyD nanoparticles indicated that the surface of the HP-β-CyD nanoparticles is largely covered by HP-β-CyD molecules forming hydrophilic hydration layers. The present results suggest that HP-β-CyD is useful for the preparation of C(60) nanoparticles and medical applications such as photodynamic therapy, in spite of having a cavity size smaller than that of γ-CyD.

摘要

一些文献报道,γ-CyD 的大空腔有利于包含 C(60),并形成 1:2(C(60):γ-CyD)配合物,而β-CyD 则很难在分子水平上形成配合物。这是因为β-CyD 的空腔尺寸(0.78nm)小于 C(60)的范德华直径(1.0nm)。在本文中,我们将报道通过纳米粒子表面的弱相互作用,由亲水性 2-羟丙基-β-环糊精(HP-β-CyD)层形成稳定的 C(60)纳米粒子。C(60)与β-CyD、γ-CyD 或 HP-β-CyD 主要以 1:2 的摩尔比在自动磁性搅拌 mortar 中进行共研磨,共研磨粉末分散在水中,所得溶液通过 0.8μm 孔径的过滤器过滤。γ-CyD 和 HP-β-CyD 体系得到了由 C(60)/CyD 纳米粒子组成的透明胶体溶液,其尺寸低于 100nm,产率高(约 100%)。C(60)/HP-β-CyD 纳米粒子物理稳定,在 28 天以上保持较小的尺寸,而γ-CyD 纳米粒子容易聚集形成大颗粒(>800nm)。包括自旋晶格弛豫时间测量在内的固态和液态 NMR 光谱研究表明,C(60)在固态和胶体溶液中与γ-CyD 和 HP-β-CyD 相互作用。与γ-CyD 纳米粒子相比,疏水性染料在 C(60)/CyD 纳米粒子表面的吸附研究表明,HP-β-CyD 纳米粒子的表面大部分被 HP-β-CyD 分子覆盖,形成亲水性水合层。尽管 HP-β-CyD 的空腔尺寸小于γ-CyD,但本研究结果表明 HP-β-CyD 可用于制备 C(60)纳米粒子,并可用于光动力疗法等医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验