State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
ACS Nano. 2011 Jun 28;5(6):4276-83. doi: 10.1021/nn201002d. Epub 2011 May 24.
Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.
制备高性能纳米复合材料需要纳米级填料均匀分散并在整个基体中形成连续网络。由三维纳米管支架组成的多孔 CNT 海绵的直接渗透可能为这一挑战提供了一种可能的解决方案。在这里,我们通过将环氧树脂流体直接渗透到 CNT 骨架中,同时保持原始网络结构和 CNT 接触,来制备 CNT 海绵纳米复合材料,从而同时提高了机械和电气性能。所得复合材料具有各向同性结构,沿任意方向的电阻率为 10 至 30 Ω·cm,远高于传统复合材料,后者是通过将随机 CNT 与环氧树脂基体混合而成的。我们观察到海绵复合材料在适度应变下压缩时的电阻可逆变化,这可以用隧道传导模型来解释,表明其在机电传感器中的潜在应用。