Suppr超能文献

比较代谢物结合态和游离态前 Q1 核糖体开关适体,探讨其对基因调控的影响。

Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

出版信息

J Biol Chem. 2011 Jul 15;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub 2011 May 18.

Abstract

Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

摘要

Riboswitches 是 RNA 调控元件,通过高亲和力适体结构域识别小分子配体来调控基因表达。分子识别可以通过控制转录或翻译所需的 mRNA 信号的可及性来导致激活或衰减的基因表达状态。研究的重点主要集中在适体如何获得其效应物的特异性、在遇到配体之前适体折叠的程度以及配体结合如何改变表达信号的可及性。在这里,我们展示了 Thermoanaerobacter tengcongensis 中 preQ(1) 核糖开关在 preQ(1)结合态和游离态的晶体结构。虽然 preQ(1) 的识别模式与 preQ(0) 观察到的相似,但表面等离子体共振显示 preQ(1) 的表观 K(D) 值为 2.1 ± 0.3nm,而 preQ(0) 的 K(D) 值为 35.1 ± 6.1nm。这种差异可以通过 preQ(1) 甲胺和适体碱基 G5 之间的相互作用来解释。为了在没有代谢物的情况下探索构象状态,确定了游离态适体结构。配体口袋天花板上的 A14 移位到 preQ(1)结合位点,导致代谢物的“封闭”进入,同时增加了核糖体结合位点的暴露。溶液散射数据表明,游离态适体是紧凑的,但“封闭”的游离态晶体结构不足以描述溶液散射数据。这些观察结果与具有相同类别的转录 preQ(1) 核糖开关不同,后者表现出严格依赖配体的折叠。讨论了对基因调控的影响。

相似文献

1
Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
J Biol Chem. 2011 Jul 15;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub 2011 May 18.
2
3
Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
PLoS One. 2012;7(9):e45239. doi: 10.1371/journal.pone.0045239. Epub 2012 Sep 17.
4
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study.
J Phys Chem B. 2012 Oct 25;116(42):12721-34. doi: 10.1021/jp309230v. Epub 2012 Oct 12.
5
Pseudoknot preorganization of the preQ1 class I riboswitch.
J Am Chem Soc. 2012 Jul 25;134(29):11928-31. doi: 10.1021/ja3049964. Epub 2012 Jul 9.
6
Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
J Am Chem Soc. 2011 Mar 30;133(12):4196-9. doi: 10.1021/ja110411m. Epub 2011 Mar 4.
7
Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
Mol Cell. 2009 Mar 27;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub 2009 Mar 12.
9
The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain.
J Biol Chem. 2009 Apr 24;284(17):11012-6. doi: 10.1074/jbc.C900024200. Epub 2009 Mar 4.
10
Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3485-94. doi: 10.1073/pnas.1503955112. Epub 2015 Jun 23.

引用本文的文献

4
Ligand-binding pockets in RNA and where to find them.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422346122. doi: 10.1073/pnas.2422346122. Epub 2025 Apr 22.
6
Harnessing Molecular Recognition for Small-Molecule-Mediated Reversible Photochemical Control Over mRNA Translation.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202503078. doi: 10.1002/anie.202503078. Epub 2025 Apr 22.
7
Ligand-binding pockets in RNA, and where to find them.
bioRxiv. 2025 Mar 15:2025.03.13.643147. doi: 10.1101/2025.03.13.643147.
8
Modeling Boltzmann-weighted structural ensembles of proteins using artificial intelligence-based methods.
Curr Opin Struct Biol. 2025 Apr;91:103000. doi: 10.1016/j.sbi.2025.103000. Epub 2025 Feb 8.
9
Scaffold-enabled high-resolution cryo-EM structure determination of RNA.
Nat Commun. 2025 Jan 21;16(1):880. doi: 10.1038/s41467-024-55699-5.
10
Engineering covalent small molecule-RNA complexes in living cells.
Nat Chem Biol. 2025 Jan 6. doi: 10.1038/s41589-024-01801-3.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
Mol Cell. 2010 Dec 10;40(5):774-86. doi: 10.1016/j.molcel.2010.11.026.
3
Ribozymes and riboswitches: modulation of RNA function by small molecules.
Biochemistry. 2010 Nov 2;49(43):9123-31. doi: 10.1021/bi1012645.
4
Structural basis for recognition of S-adenosylhomocysteine by riboswitches.
RNA. 2010 Nov;16(11):2144-55. doi: 10.1261/rna.2341610. Epub 2010 Sep 23.
5
Free state conformational sampling of the SAM-I riboswitch aptamer domain.
Structure. 2010 Jul 14;18(7):787-97. doi: 10.1016/j.str.2010.04.006.
6
Structural characterization of proteins and complexes using small-angle X-ray solution scattering.
J Struct Biol. 2010 Oct;172(1):128-41. doi: 10.1016/j.jsb.2010.06.012. Epub 2010 Jun 15.
7
Folding of a transcriptionally acting preQ1 riboswitch.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10804-9. doi: 10.1073/pnas.0914925107. Epub 2010 Jun 1.
8
Riboswitch function: flipping the switch or tuning the dimmer?
RNA Biol. 2010 May-Jun;7(3):328-32. doi: 10.4161/rna.7.3.11932. Epub 2010 May 30.
9
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验