Suppr超能文献

一个异常小的核糖开关适体结构域识别PreQ0代谢物的结构基础。

The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain.

作者信息

Spitale Robert C, Torelli Andrew T, Krucinska Jolanta, Bandarian Vahe, Wedekind Joseph E

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

出版信息

J Biol Chem. 2009 Apr 24;284(17):11012-6. doi: 10.1074/jbc.C900024200. Epub 2009 Mar 4.

Abstract

Riboswitches are RNA elements that control gene expression through metabolite binding. The preQ(1) riboswitch exhibits the smallest known ligand-binding domain and is of interest for its economical organization and high affinity interactions with guanine-derived metabolites required to confer tRNA wobbling. Here we present the crystal structure of a preQ(1) aptamer domain in complex with its precursor metabolite preQ(0). The structure is highly compact with a core that features a stem capped by a well organized decaloop. The metabolite is recognized within a deep pocket via Watson-Crick pairing with C15. Additional hydrogen bonds are made to invariant bases U6 and A29. The ligand-bound state confers continuous helical stacking throughout the core fold, thus providing a platform to promote Watson-Crick base pairing between C9 of the decaloop and the first base of the ribosome-binding site, G33. The structure offers insight into the mode of ribosome-binding site sequestration by a minimal RNA fold stabilized by metabolite binding and has implications for understanding the molecular basis by which bacterial genes are regulated.

摘要

核糖开关是通过代谢物结合来控制基因表达的RNA元件。preQ(1)核糖开关具有已知最小的配体结合结构域,因其经济的结构组织以及与赋予tRNA摆动所需的鸟嘌呤衍生代谢物的高亲和力相互作用而备受关注。在此,我们展示了preQ(1)适体结构域与其前体代谢物preQ(0)复合物的晶体结构。该结构高度紧凑,其核心是一个由组织良好的十碱基环封闭的茎。代谢物通过与C15的沃森-克里克配对在一个深口袋内被识别。还与不变碱基U6和A29形成了额外的氢键。配体结合状态在整个核心折叠中赋予连续的螺旋堆积,从而提供了一个促进十碱基环的C9与核糖体结合位点的第一个碱基G33之间沃森-克里克碱基配对的平台。该结构揭示了通过代谢物结合稳定的最小RNA折叠来隔离核糖体结合位点的模式,并对理解细菌基因调控的分子基础具有启示意义。

相似文献

1
The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain.
J Biol Chem. 2009 Apr 24;284(17):11012-6. doi: 10.1074/jbc.C900024200. Epub 2009 Mar 4.
2
Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
J Biol Chem. 2011 Jul 15;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub 2011 May 18.
3
Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
J Mol Graph Model. 2011 Sep;30:179-85. doi: 10.1016/j.jmgm.2011.07.006. Epub 2011 Jul 22.
4
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Nat Struct Mol Biol. 2007 Apr;14(4):308-17. doi: 10.1038/nsmb1224. Epub 2007 Mar 25.
6
Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
Mol Cell. 2009 Mar 27;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub 2009 Mar 12.
8
Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3485-94. doi: 10.1073/pnas.1503955112. Epub 2015 Jun 23.
10
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21.

引用本文的文献

1
Knotty is nice: Metabolite binding and RNA-mediated gene regulation by the preQ riboswitch family.
J Biol Chem. 2024 Dec;300(12):107951. doi: 10.1016/j.jbc.2024.107951. Epub 2024 Oct 30.
5
RNA target highlights in CASP15: Evaluation of predicted models by structure providers.
Proteins. 2023 Dec;91(12):1600-1615. doi: 10.1002/prot.26550. Epub 2023 Jul 19.
6
A riboswitch separated from its ribosome-binding site still regulates translation.
Nucleic Acids Res. 2023 Mar 21;51(5):2464-2484. doi: 10.1093/nar/gkad056.
7
RNA as a Major-Groove Ligand: RNA-RNA and RNA-DNA Triplexes Formed by GAA and UUC or TTC Sequences.
ACS Omega. 2022 Oct 24;7(43):38728-38743. doi: 10.1021/acsomega.2c04358. eCollection 2022 Nov 1.
8
A Fluorescent Reverse-Transcription Assay to Detect Chemical Adducts on RNA.
Biochemistry. 2022 Aug 16;61(16):1665-1668. doi: 10.1021/acs.biochem.2c00270. Epub 2022 Jul 25.
9
A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
Nat Commun. 2022 Jan 11;13(1):199. doi: 10.1038/s41467-021-27790-8.
10
Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch.
PLoS Comput Biol. 2021 Nov 12;17(11):e1009603. doi: 10.1371/journal.pcbi.1009603. eCollection 2021 Nov.

本文引用的文献

1
Wild-type tRNA reads the TMV RNA stop codon, but Q base-modified tRNA does not.
Nature. 1981 Nov 12;294(5837):188-190. doi: 10.1038/294188a0.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection.
Acta Crystallogr D Biol Crystallogr. 2008 Dec;64(Pt 12):1210-21. doi: 10.1107/S0907444908030564. Epub 2008 Nov 18.
4
Riboswitch effectors as protein enzyme cofactors.
RNA. 2008 Jun;14(6):993-1002. doi: 10.1261/rna.908408. Epub 2008 Apr 22.
5
Structural features of metabolite-sensing riboswitches.
Trends Biochem Sci. 2007 Sep;32(9):415-24. doi: 10.1016/j.tibs.2007.08.005. Epub 2007 Aug 30.
7
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Nat Struct Mol Biol. 2007 Apr;14(4):308-17. doi: 10.1038/nsmb1224. Epub 2007 Mar 25.
8
'Turning on' riboswitches to their antibacterial potential.
Nat Chem Biol. 2007 Jan;3(1):16-7. doi: 10.1038/nchembio0107-16.
9
Riboswitches as antibacterial drug targets.
Nat Biotechnol. 2006 Dec;24(12):1558-64. doi: 10.1038/nbt1268.
10
Structural basis of glmS ribozyme activation by glucosamine-6-phosphate.
Science. 2006 Sep 22;313(5794):1752-6. doi: 10.1126/science.1129666.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验