Suppr超能文献

Cap2-HAP 复合物是一个关键的转录调控因子,在调控白色念珠菌中铁稳态方面具有双重但相反的作用。

Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans.

机构信息

School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

出版信息

J Biol Chem. 2011 Jul 15;286(28):25154-70. doi: 10.1074/jbc.M111.233569. Epub 2011 May 18.

Abstract

Iron homeostasis is highly regulated in organisms across evolutionary time scale as iron is essential for various cellular processes. In a computational screen, we identified the Yap/bZIP domain family in Candida clade genomes. Cap2/Hap43 is essential for C. albicans growth under iron-deprivation conditions and for virulence in mouse. Cap2 has an amino-terminal bipartite domain comprising a fungal-specific Hap4-like domain and a bZIP domain. Our mutational analyses showed that both the bZIP and Hap4-like domains perform critical and independent functions for growth under iron-deprivation conditions. Transcriptome analysis conducted under iron-deprivation conditions identified about 16% of the C. albicans ORFs that were differentially regulated in a Cap2-dependent manner. Microarray data also suggested that Cap2 is required to mobilize iron through multiple mechanisms; chiefly by activation of genes in three iron uptake pathways and repression of iron utilizing and iron storage genes. The expression of HAP2, HAP32, and HAP5, core components of the HAP regulatory complex was induced in a Cap2-dependent manner indicating a feed-forward loop. In a feed-back loop, Cap2 repressed the expression of Sfu1, a negative regulator of iron uptake genes. Cap2 was coimmunoprecipitated with Hap5 from cell extracts prepared from iron-deprivation conditions indicating an in vivo association. ChIP assays demonstrated Hap32-dependent recruitment of Hap5 to the promoters of FRP1 (Cap2-induced) and ACO1 (Cap2-repressed). Together our data indicates that the Cap2-HAP complex functions both as a positive and a negative regulator to maintain iron homeostasis in C. albicans.

摘要

铁稳态在进化时间尺度上的生物体中受到高度调节,因为铁对于各种细胞过程都是必不可少的。在计算筛选中,我们在念珠菌目中鉴定了 Yap/bZIP 结构域家族。Cap2/Hap43 对 C. albicans 在缺铁条件下的生长和在小鼠中的毒力是必需的。Cap2 具有包含真菌特异性 Hap4 样结构域和 bZIP 结构域的氨基末端二分体结构域。我们的突变分析表明,bZIP 和 Hap4 样结构域在缺铁条件下的生长中都具有关键且独立的功能。在缺铁条件下进行的转录组分析确定了大约 16%的 C. albicans ORFs 在 Cap2 依赖性方式下差异调节。微阵列数据还表明,Cap2 通过多种机制来动员铁;主要是通过激活三种铁摄取途径中的基因和抑制铁利用和铁储存基因。HAP2、HAP32 和 HAP5 的表达,HAP 调节复合物的核心组成部分,以 Cap2 依赖性方式诱导,表明存在正反馈环。在反馈回路中,Cap2 抑制了铁摄取基因的负调节剂 Sfu1 的表达。Cap2 与 Hap5 从缺铁条件下制备的细胞提取物中被共免疫沉淀,表明存在体内关联。ChIP 测定表明 Hap32 依赖性招募 Hap5 到 FRP1(Cap2 诱导)和 ACO1(Cap2 抑制)的启动子。总之,我们的数据表明 Cap2-HAP 复合物作为正调节剂和负调节剂在 C. albicans 中维持铁稳态。

相似文献

2
Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis.
J Biol Chem. 2021 Jul;297(1):100727. doi: 10.1016/j.jbc.2021.100727. Epub 2021 Apr 29.
6
Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in .
Front Cell Infect Microbiol. 2022 Aug 8;12:960884. doi: 10.3389/fcimb.2022.960884. eCollection 2022.
7
Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex.
Eukaryot Cell. 2013 Jun;12(6):804-15. doi: 10.1128/EC.00014-13. Epub 2013 Mar 29.
8
An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis.
Cell Host Microbe. 2011 Aug 18;10(2):118-35. doi: 10.1016/j.chom.2011.07.005.
10
Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.
PLoS Genet. 2020 Jun 11;16(6):e1008881. doi: 10.1371/journal.pgen.1008881. eCollection 2020 Jun.

引用本文的文献

1
Transcription factor Hap2p regulates antioxidant stress responses to maintain miconazole resistance in .
Mycology. 2025 Jan 6;16(3):1386-1399. doi: 10.1080/21501203.2024.2432424. eCollection 2025.
3
Deletion of affects iron homeostasis, azole resistance, and virulence in .
mSphere. 2025 May 27;10(5):e0015525. doi: 10.1128/msphere.00155-25. Epub 2025 Apr 23.
4
A response to iron involving carbon metabolism in the opportunistic fungal pathogen .
mSphere. 2025 Apr 29;10(4):e0004025. doi: 10.1128/msphere.00040-25. Epub 2025 Apr 4.
6
Strain variation in the iron limitation response.
mSphere. 2024 Jul 30;9(7):e0037224. doi: 10.1128/msphere.00372-24. Epub 2024 Jul 9.
7
Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.
J Microbiol. 2024 Aug;62(8):639-648. doi: 10.1007/s12275-024-00147-8. Epub 2024 Jun 25.
8
Reprogramming in Gene Expression Network under Butanol Stress Abrogates Hyphal Development.
Int J Mol Sci. 2023 Dec 7;24(24):17227. doi: 10.3390/ijms242417227.
9
Structure based functional annotation of a MYND-less lysine methyl transferase in.
Bioinformation. 2022 Dec 31;18(12):1146-1153. doi: 10.6026/973206300181146. eCollection 2022.
10
HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance.
Nucleic Acids Res. 2023 Oct 27;51(19):10238-10260. doi: 10.1093/nar/gkad708.

本文引用的文献

3
HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus.
PLoS Pathog. 2010 Sep 30;6(9):e1001124. doi: 10.1371/journal.ppat.1001124.
5
Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence.
Microbiology (Reading). 2010 Oct;156(Pt 10):2912-2919. doi: 10.1099/mic.0.037978-0. Epub 2010 Jul 1.
6
The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research.
J Biosci. 2010 Mar;35(1):119-26. doi: 10.1007/s12038-010-0014-6.
7
Metabolic response to iron deficiency in Saccharomyces cerevisiae.
J Biol Chem. 2010 May 7;285(19):14823-33. doi: 10.1074/jbc.M109.091710. Epub 2010 Mar 15.
8
A phenotypic profile of the Candida albicans regulatory network.
PLoS Genet. 2009 Dec;5(12):e1000783. doi: 10.1371/journal.pgen.1000783. Epub 2009 Dec 24.
9
Candida albicans iron acquisition within the host.
FEMS Yeast Res. 2009 Oct;9(7):1000-12. doi: 10.1111/j.1567-1364.2009.00570.x. Epub 2009 Aug 21.
10
Fungal mechanisms for host iron acquisition.
Curr Opin Microbiol. 2009 Aug;12(4):377-83. doi: 10.1016/j.mib.2009.05.005. Epub 2009 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验