Nassi P, Nediani C, Liguri G, Taddei N, Ruggiero M, Ramponi G
Dipartimento di Scienze Biochimiche, University of Firenze, Italy.
Biochem Biophys Res Commun. 1990 Apr 30;168(2):651-8. doi: 10.1016/0006-291x(90)92370-f.
We studied the effect of human acylphosphatase on the activity of human erythrocyte membrane Ca2(+)-ATPase. Both the acylphosphatase that is contained in hemolysate and the purified enzyme isolated from red blood cells were able to stimulate Ca2(+)-ATPase activity in erythrocyte membranes. Given the same acylphosphatase activity, however, the hemolysate showed higher stimulatory effect than the purified enzyme. Acylphosphatase stimulation was additive to that induced by calmodulin, thus indicating that acylphosphatase acts in a calmodulin-independent manner. Trifluoperazine, a calmodulin antagonist, did not inhibit acylphosphatase-induced stimulation of Ca2(+)-ATPase activity. Acylphosphatase significantly decreased the rate of Ca2+ influx into inside-out erythrocyte membrane vescicles, thus acting as Ca2+ pump inhibitor. Taken together these findings indicate that acylphosphatase is a soluble, non-calmodulin activator of erythrocyte membrane Ca2(+)-ATPase and might be involved in the control of calcium transport across the plasma membrane.