Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany.
Antioxid Redox Signal. 2011 Dec 1;15(11):2855-65. doi: 10.1089/ars.2011.4029. Epub 2011 Jul 7.
Protein S-glutathionylation is a widely distributed post-translational modification of thiol groups with glutathione that can function as a redox-sensitive switch to mediate redox regulation and signal transduction. The malaria parasite Plasmodium falciparum is exposed to intense oxidative stress and possesses the enzymatic system required to regulate protein S-glutathionylation, but despite its potential importance, protein S-glutathionylation has not yet been studied in malaria parasites. In this work we applied a method based on enzymatic deglutathionylation, affinity purification of biotin-maleimide-tagged proteins, and proteomic analyses to characterize the Plasmodium glutathionylome.
We identified 493 targets of protein S-glutathionylation in Plasmodium. Functional profiles revealed that the targets are components of central metabolic pathways, such as nitrogen compound metabolism and protein metabolism. Fifteen identified proteins with important functions in metabolic pathways (thioredoxin reductase, thioredoxin, thioredoxin peroxidase 1, glutathione reductase, glutathione S-transferase, plasmoredoxin, mitochondrial dihydrolipoamide dehydrogenase, glutamate dehydrogenase 1, glyoxalase I and II, ornithine δ-aminotransferase, lactate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], pyruvate kinase [PK], and phosphoglycerate mutase) were further analyzed to study their ability to form mixed disulfides with glutathione. We demonstrate that P. falciparum GAPDH, PK, and ornithine δ-aminotransferase are reversibly inhibited by S-glutathionylation. Further, we provide evidence that not only P. falciparum glutaredoxin 1, but also thioredoxin 1 and plasmoredoxin are able to efficiently catalyze protein deglutathionylation.
We used an affinity-purification based proteomic approach to characterize the Plasmodium glutathionylome.
Our results indicate a wide regulative use of S-glutathionylation in the malaria parasite and contribute to our understanding of redox-regulatory processes in this pathogen.
蛋白质 S-谷胱甘肽化是一种广泛分布的巯基翻译后修饰,与谷胱甘肽结合,可以作为一个氧化还原敏感的开关来调节氧化还原调节和信号转导。疟原虫恶性疟原虫暴露在强烈的氧化应激环境中,并具有调节蛋白质 S-谷胱甘肽化的酶系统,但尽管它具有潜在的重要性,蛋白质 S-谷胱甘肽化在疟原虫中尚未得到研究。在这项工作中,我们应用了一种基于酶去谷胱甘肽化、生物素-马来酰亚胺标记蛋白的亲和纯化和蛋白质组学分析的方法来描述疟原虫的谷胱甘肽组。
我们在疟原虫中鉴定了 493 个蛋白质 S-谷胱甘肽化的靶标。功能谱显示,这些靶标是中央代谢途径的组成部分,如氮化合物代谢和蛋白质代谢。在代谢途径中发现了 15 种具有重要功能的鉴定蛋白(硫氧还蛋白还原酶、硫氧还蛋白、硫氧还蛋白过氧化物酶 1、谷胱甘肽还原酶、谷胱甘肽 S-转移酶、质体还原酶、线粒体二氢硫辛酰胺脱氢酶、谷氨酸脱氢酶 1、甘油醛 3-磷酸脱氢酶 [GAPDH]、丙酮酸激酶 [PK] 和磷酸甘油酸变位酶),进一步分析其与谷胱甘肽形成混合二硫键的能力。我们证明,恶性疟原虫 GAPDH、PK 和鸟氨酸 δ-氨基转移酶可被 S-谷胱甘肽化可逆抑制。此外,我们提供的证据表明,不仅恶性疟原虫谷氧还蛋白 1,而且硫氧还蛋白 1 和质体还原酶也能够有效地催化蛋白质去谷胱甘肽化。
我们使用一种基于亲和纯化的蛋白质组学方法来描述疟原虫的谷胱甘肽组。
我们的结果表明,S-谷胱甘肽化在疟原虫中被广泛调控,并有助于我们理解这种病原体中的氧化还原调节过程。