Suppr超能文献

受损耳蜗中的神经维护和再生。

Nerve maintenance and regeneration in the damaged cochlea.

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.

出版信息

Hear Res. 2011 Nov;281(1-2):56-64. doi: 10.1016/j.heares.2011.04.019. Epub 2011 May 10.

Abstract

Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.

摘要

在感音神经性听力损失发生后,人类和动物的机械敏感毛细胞和螺旋神经节细胞(SGC)会发生不同程度的变性,随着耳聋时间的延长,神经变性的趋势更大。耳蜗植入假体的出现为许多听力受损的患者提供了急需的帮助,并已成为全球公认的治疗方法。然而,外周神经纤维的持续退化和随后的 SGC 体变性会降低耳蜗植入刺激的神经靶标,从而降低其功能。人们越来越关注生物工程方法,旨在通过防止 SGC 体变性和/或再生外周神经纤维进入失聪感觉上皮来提高耳蜗植入的效果。我们回顾了在受损动物耳蜗中维持和再生神经的进展,重点介绍了内耳损伤后神经生长因子的治疗能力。此外,我们总结了内耳神经元变性的组织学过程,并描述了用于研究这种机制的不同动物模型。为了提高耳蜗植入的效果,增强聋耳蜗的生物学基础的研究具有直接的临床意义。

相似文献

1
Nerve maintenance and regeneration in the damaged cochlea.
Hear Res. 2011 Nov;281(1-2):56-64. doi: 10.1016/j.heares.2011.04.019. Epub 2011 May 10.
2
Cochlear infrastructure for electrical hearing.
Hear Res. 2011 Nov;281(1-2):65-73. doi: 10.1016/j.heares.2011.05.002. Epub 2011 May 14.
3
Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation.
Otolaryngol Head Neck Surg. 1997 Sep;117(3 Pt 1):220-8. doi: 10.1016/s0194-5998(97)70178-5.
5
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
Hear Res. 2015 Dec;330(Pt B):191-9. doi: 10.1016/j.heares.2015.02.009. Epub 2015 Mar 11.
6
7
The efficacy of a TrkB monoclonal antibody agonist in preserving the auditory nerve in deafened guinea pigs.
Hear Res. 2023 Nov;439:108895. doi: 10.1016/j.heares.2023.108895. Epub 2023 Oct 4.
8
Hearing loss and inner ear changes in a patient suffering from severe gentamicin ototoxicity.
Arch Otorhinolaryngol. 1980;228(2):113-21. doi: 10.1007/BF00455338.

引用本文的文献

2
Anatomical and functional studies of vestibular neuroepithelia from patients with Ménière's disease.
Dis Model Mech. 2025 Apr 1;18(4). doi: 10.1242/dmm.052224. Epub 2025 Apr 15.
4
Restoring vestibular function during natural self-motion: Progress and challenges.
Elife. 2024 Dec 17;13:e99516. doi: 10.7554/eLife.99516.
5
Cochlear implantation in unilateral hearing loss: impact of short- to medium-term auditory deprivation.
Front Neurosci. 2023 Oct 9;17:1247269. doi: 10.3389/fnins.2023.1247269. eCollection 2023.
7
Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor.
Front Bioeng Biotechnol. 2022 Jan 24;10:776890. doi: 10.3389/fbioe.2022.776890. eCollection 2022.
8
Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
Hear Res. 2022 Feb;414:108404. doi: 10.1016/j.heares.2021.108404. Epub 2021 Nov 27.
9
Targeted Deletion of Loxl3 by Col2a1-Cre Leads to Progressive Hearing Loss.
Front Cell Dev Biol. 2021 Jun 4;9:683495. doi: 10.3389/fcell.2021.683495. eCollection 2021.
10
Potentiation of Brain-Derived Neurotrophic Factor-Induced Protection of Spiral Ganglion Neurons by C3 Exoenzyme/Rho Inhibitor.
Front Cell Neurosci. 2021 Mar 11;15:602897. doi: 10.3389/fncel.2021.602897. eCollection 2021.

本文引用的文献

2
The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats.
J Assoc Res Otolaryngol. 2010 Dec;11(4):587-603. doi: 10.1007/s10162-010-0234-3. Epub 2010 Sep 4.
3
Neurotrophin therapy and cochlear implantation: translating animal models to human therapy.
Exp Neurol. 2010 Nov;226(1):1-5. doi: 10.1016/j.expneurol.2010.07.012. Epub 2010 Jul 21.
4
Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13396-401. doi: 10.1073/pnas.1003027107. Epub 2010 Jul 12.
5
Chronic electrical stimulation does not prevent spiral ganglion cell degeneration in deafened guinea pigs.
Hear Res. 2010 Oct 1;269(1-2):169-79. doi: 10.1016/j.heares.2010.06.015. Epub 2010 Jun 25.
6
Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea.
Mol Ther. 2010 Jun;18(6):1111-22. doi: 10.1038/mt.2010.28. Epub 2010 Mar 9.
7
Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae.
Exp Neurol. 2010 Jun;223(2):464-72. doi: 10.1016/j.expneurol.2010.01.011. Epub 2010 Jan 28.
8
Cochlear implantation in children with auditory neuropathy spectrum disorder.
Ear Hear. 2010 Jun;31(3):325-35. doi: 10.1097/AUD.0b013e3181ce693b.
10
Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss.
J Neurosci. 2009 Nov 11;29(45):14077-85. doi: 10.1523/JNEUROSCI.2845-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验