文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor.

作者信息

Wille Inga, Harre Jennifer, Oehmichen Sarah, Lindemann Maren, Menzel Henning, Ehlert Nina, Lenarz Thomas, Warnecke Athanasia, Behrens Peter

机构信息

Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany.

Cluster of Excellence Hearing4all, Hannover, Germany.

出版信息

Front Bioeng Biotechnol. 2022 Jan 24;10:776890. doi: 10.3389/fbioe.2022.776890. eCollection 2022.


DOI:10.3389/fbioe.2022.776890
PMID:35141211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8819688/
Abstract

State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs . Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/70ba1cb13d5e/fbioe-10-776890-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/bbd574317082/fbioe-10-776890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/72ce80e7cbed/fbioe-10-776890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/068b44019129/fbioe-10-776890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/e0bffa8d5cff/fbioe-10-776890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/05e33d6d0ad4/fbioe-10-776890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/e821520df4e0/fbioe-10-776890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/36f403b3b592/fbioe-10-776890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/420456c82fec/fbioe-10-776890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/7029c540c288/fbioe-10-776890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/bb3fd6c755cb/fbioe-10-776890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/0743c12e7c03/fbioe-10-776890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/d2abc0abf4fd/fbioe-10-776890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/70ba1cb13d5e/fbioe-10-776890-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/bbd574317082/fbioe-10-776890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/72ce80e7cbed/fbioe-10-776890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/068b44019129/fbioe-10-776890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/e0bffa8d5cff/fbioe-10-776890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/05e33d6d0ad4/fbioe-10-776890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/e821520df4e0/fbioe-10-776890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/36f403b3b592/fbioe-10-776890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/420456c82fec/fbioe-10-776890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/7029c540c288/fbioe-10-776890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/bb3fd6c755cb/fbioe-10-776890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/0743c12e7c03/fbioe-10-776890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/d2abc0abf4fd/fbioe-10-776890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941c/8819688/70ba1cb13d5e/fbioe-10-776890-g013.jpg

相似文献

[1]
Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor.

Front Bioeng Biotechnol. 2022-1-24

[2]
Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro.

PLoS One. 2018-3-27

[3]
Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes.

J Biomed Mater Res A. 2009-10

[4]
Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss.

J Comp Neurol. 2005-5-30

[5]
Bridging the electrode-neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear.

Acta Biomater. 2022-10-1

[6]
Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss.

Hear Res. 2008-8

[7]
Expression of Brain-Derived Neurotrophic Factor in Human Spiral Ganglia Neurons after Cochlear Implantation.

Otol Neurotol. 2024-3-1

[8]
Lipid nanoparticles-encapsulated brain-derived neurotrophic factor mRNA delivered through the round window niche in the cochleae of guinea pigs.

Exp Brain Res. 2021-2

[9]
Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons?

Hear Res. 2007-3

[10]
Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats.

J Assoc Res Otolaryngol. 2013-2-8

引用本文的文献

[1]
Inositol trisphosphate and ryanodine receptor signaling distinctly regulate neurite pathfinding in response to engineered micropatterned surfaces.

PLoS One. 2024

[2]
Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance.

Front Neurosci. 2024-7-24

[3]
Tissue engineering strategies for spiral ganglion neuron protection and regeneration.

J Nanobiotechnology. 2024-7-31

[4]
Recent progresses in neural tissue engineering using topographic scaffolds.

Am J Stem Cells. 2024-2-25

本文引用的文献

[1]
The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target.

RSC Adv. 2019-1-23

[2]
Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation.

Adv Funct Mater. 2018-3-21

[3]
Decellularized equine carotid artery layers as matrix for regenerated neurites of spiral ganglion neurons.

Int J Artif Organs. 2020-5

[4]
Hearing regeneration and regenerative medicine: present and future approaches.

Arch Med Sci. 2019-7

[5]
Peripheral Nerve Conduit: Materials and Structures.

ACS Chem Neurosci. 2019-7-5

[6]
Stem Cell Based Drug Delivery for Protection of Auditory Neurons in a Guinea Pig Model of Cochlear Implantation.

Front Cell Neurosci. 2019-5-14

[7]
Hearing Protection, Restoration, and Regeneration: An Overview of Emerging Therapeutics for Inner Ear and Central Hearing Disorders.

Otol Neurotol. 2019-6

[8]
The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met.

Front Cell Neurosci. 2019-1-11

[9]
Microenvironmental support for cell delivery to the inner ear.

Hear Res. 2018-6-21

[10]
The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing.

World J Otorhinolaryngol Head Neck Surg. 2018-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索