Suppr超能文献

含删失数据的条件平均剩余寿命函数的非参数估计

Nonparametric estimation of the conditional mean residual life function with censored data.

作者信息

McLain Alexander C, Ghosh Sujit K

机构信息

Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.

出版信息

Lifetime Data Anal. 2011 Oct;17(4):514-32. doi: 10.1007/s10985-011-9197-x. Epub 2011 May 21.

Abstract

The conditional mean residual life (MRL) function is the expected remaining lifetime of a system given survival past a particular time point and the values of a set of predictor variables. This function is a valuable tool in reliability and actuarial studies when the right tail of the distribution is of interest, and can be more informative than the survivor function. In this paper, we identify theoretical limitations of some semi-parametric conditional MRL models, and propose two nonparametric methods of estimating the conditional MRL function. Asymptotic properties such as consistency and normality of our proposed estimators are established. We investigate via simulation study the empirical properties of the proposed estimators, including bootstrap pointwise confidence intervals. Using Monte Carlo simulations we compare the proposed nonparametric estimators to two popular semi-parametric methods of analysis, for varying types of data. The proposed estimators are demonstrated on the Veteran's Administration lung cancer trial.

摘要

条件平均剩余寿命(MRL)函数是指在系统生存超过特定时间点且一组预测变量取值已知的情况下,该系统预期的剩余寿命。当分布的右尾受到关注时,此函数在可靠性和精算研究中是一个有价值的工具,并且可能比生存函数更具信息量。在本文中,我们识别了一些半参数条件MRL模型的理论局限性,并提出了两种估计条件MRL函数的非参数方法。我们建立了所提出估计量的一致性和正态性等渐近性质。我们通过模拟研究考察了所提出估计量的经验性质,包括自助逐点置信区间。使用蒙特卡罗模拟,我们针对不同类型的数据,将所提出的非参数估计量与两种流行的半参数分析方法进行了比较。所提出的估计量在退伍军人管理局肺癌试验中得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验