Suppr超能文献

设计用于成功进行蛋白质表达的基因。

Designing genes for successful protein expression.

作者信息

Welch Mark, Villalobos Alan, Gustafsson Claes, Minshull Jeremy

机构信息

DNA2.0, Inc., Suite A, Menlo Park, California, USA.

出版信息

Methods Enzymol. 2011;498:43-66. doi: 10.1016/B978-0-12-385120-8.00003-6.

Abstract

DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.

摘要

如今,DNA序列在计算机上比作为物理DNA更容易获得。从头合成基因是构建遗传构建体越来越经济高效的方法,并且有效地消除了基于现有序列构建构建体的限制。这使科学家和工程师能够通过实验检验他们关于序列与功能关系的假设。分子生物学家,以及现在的合成生物学家,正在对具有特定功能的遗传元件进行表征和编目,旨在将它们组合起来执行复杂功能。然而,合成基因最常见的用途是用于编码蛋白质的表达。大量不同的蛋白质使得不可能对每个功能基因进行表征和编目。相反,有必要从实验数据中提取设计原则:这些数据可以通过进行预测然后合成序列来测试这些预测而产生。由于遗传密码的简并性,设计编码蛋白质的基因序列是一个高维问题,因此没有单一的简单公式可以保证成功。尽管如此,还是有几个直接的步骤可以采取,以大大增加设计序列导致编码蛋白质表达的可能性。在本章中,我们讨论对蛋白质表达很重要的基因序列参数。我们还描述了优化这些参数的算法,以及在初次尝试失败时可能有用的故障排除程序。最后,我们展示了许多这些方法如何使用合成生物学软件工具Gene Designer来完成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验