Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
Nucleic Acids Res. 2011 Aug;39(15):e98. doi: 10.1093/nar/gkr341. Epub 2011 May 20.
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important aspect of TF binding in eukaryotes, mediating tissue-specific gene expression. We have developed an algorithm, spaced motif analysis (SpaMo), which is able to infer physical interactions between the given TF and TFs bound at neighbouring sites at the DNA interface. The algorithm predicts TF interactions in half of the ChIP-seq data sets we test, with the majority of these predictions supported by direct evidence from the literature or evidence of homodimerization. High resolution motif spacing information obtained by this method can facilitate an improved understanding of individual TF complex structures. SpaMo can assist researchers in extracting maximum information relating to binding mechanisms from their TF ChIP-seq data. SpaMo is available for download and interactive use as part of the MEME Suite (http://meme.nbcr.net).
染色质免疫沉淀结合高通量测序(ChIP-seq)允许研究人员以高分辨率确定单个转录因子(TF)在全基因组上的结合位置。可以利用这些信息来研究 TF 行为的各个方面,包括控制 TF 结合的机制。TF 之间的物理相互作用构成了真核生物 TF 结合的一个重要方面,介导组织特异性基因表达。我们开发了一种算法,称为间隔基序分析(SpaMo),该算法能够推断给定 TF 与 DNA 界面上相邻结合位点处的 TF 之间的物理相互作用。该算法预测了我们测试的一半 ChIP-seq 数据集的 TF 相互作用,其中大多数预测都得到了文献中直接证据或同源二聚化证据的支持。通过这种方法获得的高分辨率基序间隔信息可以促进对单个 TF 复合物结构的更好理解。SpaMo 可用于下载和交互使用,作为 MEME 套件(http://meme.nbcr.net)的一部分。