Li X, Lowengrub J, Rätz A, Voigt A
Department of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, USA (
Commun Math Sci. 2009 Mar 1;7(1):81-107. doi: 10.4310/cms.2009.v7.n1.a4.
We extend previous work and present a general approach for solving partial differential equations in complex, stationary, or moving geometries with Dirichlet, Neumann, and Robin boundary conditions. Using an implicit representation of the geometry through an auxilliary phase field function, which replaces the sharp boundary of the domain with a diffuse layer (e.g. diffuse domain), the equation is reformulated on a larger regular domain. The resulting partial differential equation is of the same order as the original equation, with additional lower order terms to approximate the boundary conditions. The reformulated equation can be solved by standard numerical techniques. We use the method of matched asymptotic expansions to show that solutions of the re-formulated equations converge to those of the original equations. We provide numerical simulations which confirm this analysis. We also present applications of the method to growing domains and complex three-dimensional structures and we discuss applications to cell biology and heteroepitaxy.
我们扩展了先前的工作,并提出了一种通用方法,用于求解具有狄利克雷(Dirichlet)、诺伊曼(Neumann)和罗宾(Robin)边界条件的复杂、静态或移动几何形状中的偏微分方程。通过辅助相场函数对几何形状进行隐式表示,该函数用扩散层(例如扩散域)代替域的尖锐边界,从而在更大的规则域上重新表述方程。所得的偏微分方程与原方程具有相同的阶数,并带有额外的低阶项以近似边界条件。重新表述的方程可以通过标准数值技术求解。我们使用匹配渐近展开法来证明重新表述方程的解收敛于原方程的解。我们提供了数值模拟来证实这一分析。我们还展示了该方法在生长域和复杂三维结构中的应用,并讨论了其在细胞生物学和异质外延中的应用。