Suppr超能文献

求解复杂几何形状中的偏微分方程:一种扩散域方法。

SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH.

作者信息

Li X, Lowengrub J, Rätz A, Voigt A

机构信息

Department of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, USA (

出版信息

Commun Math Sci. 2009 Mar 1;7(1):81-107. doi: 10.4310/cms.2009.v7.n1.a4.

Abstract

We extend previous work and present a general approach for solving partial differential equations in complex, stationary, or moving geometries with Dirichlet, Neumann, and Robin boundary conditions. Using an implicit representation of the geometry through an auxilliary phase field function, which replaces the sharp boundary of the domain with a diffuse layer (e.g. diffuse domain), the equation is reformulated on a larger regular domain. The resulting partial differential equation is of the same order as the original equation, with additional lower order terms to approximate the boundary conditions. The reformulated equation can be solved by standard numerical techniques. We use the method of matched asymptotic expansions to show that solutions of the re-formulated equations converge to those of the original equations. We provide numerical simulations which confirm this analysis. We also present applications of the method to growing domains and complex three-dimensional structures and we discuss applications to cell biology and heteroepitaxy.

摘要

我们扩展了先前的工作,并提出了一种通用方法,用于求解具有狄利克雷(Dirichlet)、诺伊曼(Neumann)和罗宾(Robin)边界条件的复杂、静态或移动几何形状中的偏微分方程。通过辅助相场函数对几何形状进行隐式表示,该函数用扩散层(例如扩散域)代替域的尖锐边界,从而在更大的规则域上重新表述方程。所得的偏微分方程与原方程具有相同的阶数,并带有额外的低阶项以近似边界条件。重新表述的方程可以通过标准数值技术求解。我们使用匹配渐近展开法来证明重新表述方程的解收敛于原方程的解。我们提供了数值模拟来证实这一分析。我们还展示了该方法在生长域和复杂三维结构中的应用,并讨论了其在细胞生物学和异质外延中的应用。

相似文献

5
A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.一种用于椭圆型边值问题的无核边界积分方法。
J Comput Phys. 2007 Dec 10;227(2):1046-1074. doi: 10.1016/j.jcp.2007.08.021. Epub 2007 Sep 5.
8
Solving high-dimensional partial differential equations using deep learning.使用深度学习解决高维偏微分方程。
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8505-8510. doi: 10.1073/pnas.1718942115. Epub 2018 Aug 6.
10
Master equations and the theory of stochastic path integrals.主方程和随机路径积分理论。
Rep Prog Phys. 2017 Apr;80(4):046601. doi: 10.1088/1361-6633/aa5ae2.

引用本文的文献

1
Dynamic cluster field modeling of collective chemotaxis.动态簇场模型的群体趋药性研究
Sci Rep. 2024 Oct 24;14(1):25162. doi: 10.1038/s41598-024-75653-1.
7
Improved phase-field models of melting and dissolution in multi-component flows.多组分流中熔化和溶解的改进相场模型。
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200508. doi: 10.1098/rspa.2020.0508. Epub 2020 Oct 21.
10
Mechanisms of Cell Polarization.细胞极化的机制
Curr Opin Syst Biol. 2017 Jun;3:43-53. doi: 10.1016/j.coisb.2017.03.005. Epub 2017 Apr 12.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验