Suppr超能文献

通过原位微纤网络和界面相容剂的组合抑制注塑等规聚丙烯的皮层-芯层结构。

Suppressing the skin-core structure of injection-molded isotactic polypropylene via combination of an in situ microfibrillar network and an interfacial compatibilizer.

机构信息

College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.

出版信息

J Phys Chem B. 2011 Jun 16;115(23):7497-504. doi: 10.1021/jp1118162. Epub 2011 May 23.

Abstract

Injection-molded semicrystalline polymer parts generally exhibited a so-called skin-core structure basically as a result of the large gradients of temperature, shear rate, stress, and pressure fields created by the boundary conditions of injection molding. Suppression of the skin-core structure is a long-term practical challenge. In the current work, the skin-core structure of the conventional injection-molded isotactic polypropylene (iPP) was largely relieved by the cooperative effects of an in situ microfibrillar network and interfacial compatibilizer. The in situ poly(ethylene terephthalate) microfibrils of 1-8 μm in diameter and large aspect ratios of above 40 tended to entangle with each other to generate a microfibrillar network in the iPP melt. During injection molding, the iPP molecules experienced confined flow in the microchannels or pores formed by the microfibrillar network, which could redistribute and homogenize the flow field of polymer melt. Addition of the compatibilizer, glycidyl methacrylate-grafted iPP, restrained the molecular orientation but facilitated preservation of oriented molecules due to the chemical bonds at the interface between PET microfibrils and iPP. The cooperative effects of in situ microfibrillar network and interfacial compatibilizer led to almost the same molecular orientation across the whole thickness of the injection-molded parts. Additionally, the content of β crystals in different layers of injection-molded iPP parts depended on the combined effects of the molecular orientation, the amount of oriented crystals, and the crystallization time between 105 and 140 °C. The presence of the interfacial compatibilizer facilitated formation of the β crystals because of preservation of the oriented molecules.

摘要

注塑成型的半结晶聚合物零件通常表现出所谓的皮芯结构,这主要是由于注塑成型的边界条件产生的温度、剪切速率、应力和压力场的大梯度所致。抑制皮芯结构是一个长期的实际挑战。在目前的工作中,通过原位微纤维网络和界面增容剂的协同作用,大大缓解了常规注塑等规聚丙烯(iPP)的皮芯结构。直径为 1-8μm 且纵横比大于 40 的原位聚对苯二甲酸乙二醇酯(PET)微纤维倾向于缠结在一起,在 iPP 熔体中生成微纤维网络。在注塑成型过程中,iPP 分子在由微纤维网络形成的微通道或微孔中经历受限流动,这可以重新分布和均匀化聚合物熔体的流场。增容剂甲基丙烯酸缩水甘油酯接枝 iPP 的添加限制了分子取向,但由于 PET 微纤维和 iPP 之间的界面化学键,有利于取向分子的保留。原位微纤维网络和界面增容剂的协同作用导致注塑成型零件整个厚度的分子取向几乎相同。此外,注塑成型 iPP 零件不同层中β晶体的含量取决于分子取向、取向晶体的数量以及在 105 至 140°C 之间的结晶时间的综合影响。界面增容剂的存在由于保留了取向分子,有利于β晶体的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验