Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan.
Biochemistry. 2011 Jun 28;50(25):5558-65. doi: 10.1021/bi200567k. Epub 2011 Jun 2.
Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.
谷氨酸作为主要的兴奋性神经递质,在化学传递中发挥着重要作用。囊泡中的谷氨酸积累是由囊泡谷氨酸转运体(VGLUT)介导的,VGLUT 与蛋白质的电化学驱动力一起影响谷氨酸的后续量子释放和高级神经元的功能。谷氨酸的囊泡含量与膜电位(Δψ)密切相关,这表明Δψ决定了囊泡中谷氨酸的浓度。谷氨酸向囊泡内的转运高度依赖于 Cl(-)。这种阴离子刺激谷氨酸转运,但在较高浓度时具有抑制作用。越来越多的证据表明,Cl(-) 通过控制 VGLUT 活性和 H(+)电化学梯度来调节谷氨酸转运。最近的一项全面研究表明,代谢中间产物如酮体竞争性抑制 VGLUT 的 Cl(-) 调节。研究还表明,酮体在控制癫痫方面是有效的。这些结果表明代谢状态和高级脑功能之间存在相关性。我们提出 Cl(-)作为信号转导基本调节剂的新功能。