Suppr超能文献

基于 SVM 模型、药效基团和分子对接的分层多阶段虚拟筛选方法发现新型 Pim-1 激酶抑制剂。

Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking.

机构信息

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

出版信息

J Chem Inf Model. 2011 Jun 27;51(6):1364-75. doi: 10.1021/ci100464b. Epub 2011 May 27.

Abstract

In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.

摘要

在本研究中,我们描述了新型强效 Pim-1 抑制剂的发现,该抑制剂采用了一种分层多阶段虚拟筛选(VS)方法,该方法基于支持向量机(基于 SVM 的 VS 或 SB-VS)、基于药效团的 VS(PB-VS)和基于对接的 VS(DB-VS)方法。在这种方法中,三种 VS 方法按照复杂程度递增的顺序应用,以便第一个筛选器(SB-VS)快速而简单,而随后的筛选器(PB-VS 和 DB-VS)则更耗时,但仅应用于整个数据库的一小部分。该方法的评估表明,它可以用于快速筛选大型化学库,具有高命中率和高富集因子。该方法随后应用于筛选几个大型化学库,包括 PubChem、Specs 和 Enamine 以及内部数据库。从最终的命中中,选择了 47 种化合物进行进一步的体外 Pim-1 抑制测定,其中 15 种化合物对 Pim-1 表现出纳摩尔级或低微摩尔抑制活力。特别地,其中四种化合物被发现具有新的骨架,为 Pim-1 抑制剂的化学开发提供了潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验