Institute of Agrobiotechnology, Center for Research and Technology Hellas, 6th Km Charilaou Thermi Road, Thermi GR-570 01, Greece.
J Plant Physiol. 2011 Sep 15;168(14):1675-84. doi: 10.1016/j.jplph.2011.03.015. Epub 2011 May 31.
To further understand flowering and flower organ formation in the monocot crop saffron crocus (Crocus sativus L.), we cloned four MIKC(c) type II MADS-box cDNA sequences of the E-class SEPALLATA3 (SEP3) subfamily designated CsatSEP3a/b/c/c_as as well as the three respective genomic sequences. Sequence analysis showed that cDNA sequences of CsatSEP3 c and c_as are the products of alternative splicing of the CsatSEP3c gene. Bioinformatics analysis with putative orthologous sequences from various plant species suggested that all four cDNA sequences encode for SEP3-like proteins with characteristic motifs and amino acids, and highlighted intriguing sequence features. Phylogenetically, the isolated sequences were closest to the SEP3-like genes from monocots such as Asparagus virgatus, Oryza sativa, Zea mays, and the dicot Arabidopsis SEP3 gene. All four isolated C. sativus sequences were strongly expressed in flowers and in all flower organs: whorl1 tepals, whorl2 tepals, stamens and carpels, but not in leaves. Expression of CsatSEP3a/b/c/c_as cDNAs was compared in wild-type and mutant flowers. Expression of the isolatedCsatSEP3-like genes in whorl1 tepals together with E-class CsatAP1/FUL subfamily and B-class CsatAP3 and CsatPI subfamilies of genes, fits the ABCE "quartet model," an extended form of the original ABC model proposed to explain the homeotic transformation of whorl1 sepals into whorl1 tepals in Liliales and Asparagales plants such as C. sativus. This conclusion was also supported by the interaction of the CsatSEP3b protein with CsatAP1/FUL and CsatAP3 proteins. In contrast, expression of both B-class CsatAP3 and CsatPI genes and the C-class CsatAGAMOUS genes together with E-class CsatSEP3-like genes in carpels, without any phenotypic effects on carpels, raises questions about the role of these gene classes in carpel formation in this non-grass monocot and requires further experimentation. Finally, taking advantage of the size and sequence differences in amplified genomic sequences of the triploid C. sativus and comparing them with the respective sequences from C. tomasii, C. hadriaticus and C. cartwrightianus, three putative wild-type diploid progenitor species, we examined the origin of CsatSEP3a sequence.
为了进一步了解单子叶作物藏红花(Crocus sativus L.)的开花和花器官形成,我们克隆了四个属于 E 类 SEPALLATA3(SEP3)亚家族的 MIKC(c) 型 II MADS-box cDNA 序列,分别命名为 CsatSEP3a/b/c/c_as,以及三个相应的基因组序列。序列分析表明,CsatSEP3c 和 c_as 的 cDNA 序列是 CsatSEP3c 基因的选择性剪接产物。利用来自不同植物物种的假定直系同源序列进行生物信息学分析表明,这四个 cDNA 序列均编码具有特征基序和氨基酸的 SEP3 样蛋白,并突出了有趣的序列特征。系统发育分析表明,分离出的序列与单子叶植物如天门冬属、稻属、玉米属和双子叶植物拟南芥 SEP3 基因的 SEP3 样基因最为接近。四个分离的藏红花序列在花中和所有花器官中强烈表达:第一轮花被片、第二轮花被片、雄蕊和心皮,但在叶片中不表达。在野生型和突变型花中比较 CsatSEP3a/b/c/c_as cDNA 的表达。分离的 CsatSEP3 样基因在第一轮花被片中的表达与 E 类 CsatAP1/FUL 亚家族以及 B 类 CsatAP3 和 CsatPI 亚家族基因一起,符合 ABCE“ Quartet 模型”,这是解释百合目和天门冬目植物(如藏红花)第一轮花被片向第一轮花被片转化的原始 ABC 模型的扩展形式。这一结论也得到了 CsatSEP3b 蛋白与 CsatAP1/FUL 和 CsatAP3 蛋白相互作用的支持。相比之下,B 类 CsatAP3 和 CsatPI 基因以及 C 类 CsatAGAMOUS 基因与 E 类 CsatSEP3 样基因在心皮中的共同表达,而在心皮中没有任何表型效应,这引发了关于这些基因类在心皮形成中的作用的问题在这个非禾本科单子叶植物中,需要进一步的实验。最后,我们利用三倍体藏红花扩增基因组序列的大小和序列差异,并将其与相应的 C. tomasii、C. hadriaticus 和 C. cartwrightianus 序列进行比较,这三个是假定的野生型二倍体祖先物种,我们检查了 CsatSEP3a 序列的起源。