Division of Neonatology, Dept. of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd St., Wauwatosa, WI 53226, USA.
Am J Physiol Lung Cell Mol Physiol. 2011 Sep;301(3):L334-45. doi: 10.1152/ajplung.00316.2010. Epub 2011 May 27.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.
新生儿持续性肺动脉高压(PPHN)与血管密度降低有关,这导致肺血管阻力增加。先前的研究表明,内皮型一氧化氮合酶(eNOS)的解偶联活性和 NADPH 氧化酶活性的增加导致 NO 生物利用度显著降低,并损害 PPHN 中的血管生成。在本研究中,我们假设四氢生物蝶呤(BH4)的丧失,eNOS 的关键辅助因子,诱导 eNOS 的解偶联活性并损害 PPHN 中的血管生成。从患有 PPHN 的胎羊(HTFL-PAEC)或对照羊(NFL-PAEC)中分离的肺动脉内皮细胞(PAEC)用于研究损害 PPHN 中血管生成的细胞机制。在基础条件下和在 sepiapterin(Sep)补充后,检查了与 BH4 水平、GTP-环化水解酶-1(GCH-1)表达、eNOS 二聚体形成和 eNOS-热休克蛋白 90(hsp90)相互作用有关的细胞机制。与 NFL-PAEC 相比,HTFL-PAEC 中的细胞 BH4 水平、GCH-1 表达和 eNOS 二聚体形成降低。Sep 补充可降低 HTFL-PAEC 的细胞凋亡并增加体外血管生成和离体肺动脉发芽血管生成。Sep 还增加了 HTFL-PAEC 中的细胞 BH4 含量、NO 产生、eNOS 二聚体形成和 eNOS-hsp90 相互作用,并减少了超氧化物的形成。这些数据表明,Sep 通过重新偶联 eNOS 活性来改善 HTFL-PAEC 的 NO 产生和血管生成潜力。通过 Sep 补充增加 BH4 水平可能是改善 eNOS 功能和恢复 PPHN 中血管生成的重要治疗方法。