Institut Néel, CNRS et Université Joseph Fourier, BP 166, Grenoble, France.
J Phys Condens Matter. 2011 Jun 22;23(24):243202. doi: 10.1088/0953-8984/23/24/243202. Epub 2011 May 31.
We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dot experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generally asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S = 1 Kondo anomalies appear at zero bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows fine-tuning with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically 'ordered' state. These observations are put theoretically into a consistent global picture by using new numerical renormalization group simulations, tailored to capture sharp finite-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.
我们在这里回顾了在没有强自旋轨道效应的情况下,双电子分子晶体管物理的一些普遍方面。最近的几个量子点实验表明,静电背栅可以用于控制磁能级的能散。我们讨论了金属接触对两个不同分子轨道的普遍不对称耦合如何确实导致在量子点中存在单重态和三重态时,哈丁规则的门可调谐性。对于使得单重态构成(非磁性)基态的栅极电压,通常观察到低电压输运的抑制,然而,在有限偏压下,增强的隧道结特征可以恢复这种抑制。更有趣的是,当栅极电压被控制以获得三重态构型时,在零偏压下出现自旋 S = 1 的 Kondo 异常,与屏蔽大于 1/2 的自旋相关的非费米液体特征。最后,我们器件中微小的裸 singlet-triplet 分裂允许通过栅极在这两种磁性构型之间进行微调,导致屏蔽量子相变。这种转变发生在非磁性 singlet 相和三重态相之间,在非磁性 singlet相中发生两阶段 Kondo 效应,在三重态相中,部分补偿(欠屏蔽)的矩类似于磁性“有序”状态。通过使用新的数值重整化群模拟,以及对两轨道安德森模型的互补非平衡图论计算,将这些观察结果理论上纳入一个一致的整体图像,这些模拟专门用于捕捉库仑菱形内的尖锐有限电压隧道结特征。这项工作应该进一步阐明经典 Kondo 问题的多轨道扩展仍然提出的复杂难题。