UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37831, United States.
J Phys Chem B. 2011 Jul 7;115(26):8575-80. doi: 10.1021/jp201887v. Epub 2011 Jun 10.
Sterical (van der Waals-induced) rotational barriers of methyl groups are investigated theoretically, using ab initio and empirical force field calculations, for various three-dimensional microenvironmental conditions around the methyl group rotator of a model neopentane molecule. The destabilization (reducing methyl rotational barriers) or stabilization (increasing methyl rotational barriers) of the staggered conformation of the methyl rotator depends on a combination of microenvironmental contributions from (i) the number of atoms around the rotator, (ii) the distance between the rotator and the microenvironmental atoms, and (iii) the dihedral angle between the stator, rotator, and molecular environment around the rotator. These geometrical criteria combine their respective effects in a linearly additive fashion, with no apparent cooperative effects, and their combination in space around a rotator may increase, decrease, or leave the rotator's rotational barrier unmodified. This is exemplified in a geometrical analysis of the alanine dipeptide crystal where microenvironmental effects on methyl rotators' barrier of rotation fit the geometrical mapping described in the neopentane model.
使用从头算和经验力场计算,研究了模型新戊烷分子甲基旋转体周围各种三维微观环境条件下甲基的立体(范德华诱导)旋转势垒。甲基旋转体交错构象的去稳定化(降低甲基旋转势垒)或稳定化(增加甲基旋转势垒)取决于以下微观环境贡献的组合:(i)旋转体周围的原子数量,(ii)旋转体与微观环境原子之间的距离,以及(iii)定子、旋转体和旋转体周围分子环境之间的二面角。这些几何标准以线性加和的方式组合各自的影响,没有明显的协同作用,并且它们在旋转体周围的空间中的组合可能会增加、减少或保持旋转体的旋转势垒不变。在丙氨酸二肽晶体中对甲基旋转体旋转势垒的微观环境效应的几何分析中,证实了这一模式,该分析符合新戊烷模型中描述的几何映射。