Suppr超能文献

实用的基于非靶向气相色谱/质谱的代谢组学平台,用于代谢表型分析。

Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis.

机构信息

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.

出版信息

J Biosci Bioeng. 2011 Sep;112(3):292-8. doi: 10.1016/j.jbiosc.2011.05.001. Epub 2011 Jun 8.

Abstract

Gas chromatography coupled to mass spectrometry (GC/MS) is a core analytical method for metabolomics and has been used as a platform in non-targeted analysis, especially for hydrophilic metabolites. Non-targeted GC/MS-based metabolomics generally requires a high-throughput technology to handle a large volume of samples and an accumulated database (reference library) of the retention times and mass spectra of standard compounds for accurate peak identification. In this study, we provide a practical GC/MS platform and an auto peak identification technique that is not restricted to certain types of mass spectrometers. The platform utilizes a quadrupole mass spectrometer capable of high-speed scanning, resulting in greater output compared with Pegasus GC-time of flight (TOF)/MS, which has been an essential instrument for high-throughput experiments. Moreover, we show that our reference library is broadly applicable to other instruments; peak identification can be readily performed using the library without constructing a reference resource. The usefulness and versatility of our system are demonstrated by the analyses of three experimental metabolomics data sets, including standard mixtures and real biological samples.

摘要

气相色谱-质谱联用(GC/MS)是代谢组学的核心分析方法,已被用作非靶向分析的平台,特别是用于亲水代谢物。基于非靶向 GC/MS 的代谢组学通常需要高通量技术来处理大量的样品,并积累标准化合物的保留时间和质谱的数据库(参考库),以进行准确的峰识别。在这项研究中,我们提供了一个实用的 GC/MS 平台和一种自动峰识别技术,该技术不受特定类型质谱仪的限制。该平台利用能够高速扫描的四极杆质谱仪,与 Pegasus GC-飞行时间(TOF)/MS 相比,输出更大,后者一直是高通量实验的必备仪器。此外,我们还表明,我们的参考库广泛适用于其他仪器;无需构建参考资源,即可使用该库轻松进行峰识别。通过对三个实验代谢组学数据集(包括标准混合物和真实生物样本)的分析,展示了我们系统的实用性和多功能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验