Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.
J Phys Chem A. 2011 Jul 7;115(26):7574-81. doi: 10.1021/jp202654v. Epub 2011 Jun 7.
In this paper, we continue our evaluation of Forster-type theories of exciton diffusion in disordered environments. The perylenediimide dye Lumogen Red is used as a donor molecule in two different liquids, CHCl(3) and dimethylformamide, and the energy transfer to the acceptor molecule Rhodamine 700 is measured using time-resolved fluorescence decays. The exciton motion is measured over Lumogen Red concentrations ranging from 1 × 10(-4) to 5 × 10(-2) M, and the results are compared to previous results for exciton diffusion in a solid polymer. Depending on the theoretical approach used to analyze the data, we find that the energy migration in the liquids is a factor of 2-3 faster than in the solid polymer, even after taking molecular translation into account. Measurements for a Lumogen Red concentration of 10 mM in the different host environments yield diffusion constants ranging from 2.2 to 3.1 nm(2)/ns in the liquids, as compared to 1.1-1.2 nm(2)/ns in solid poly(methyl methacrylate) (PMMA). The results in the liquids are in good agreement with theoretical predictions and numerical simulations of previous workers, while the results in solid PMMA are 2-3 times slower. This discrepancy is discussed in the context of the rapid energetic averaging present in the liquid environments but absent in the solid matrix, where unfavorable configurations and low energy trapping sites are frozen in by the static disorder.
在本文中,我们继续评估福斯特型激子在无序环境中扩散的理论。苝二酰亚胺染料 Lumogen Red 被用作两种不同液体(CHCl(3) 和二甲基甲酰胺)中的供体分子,并用时间分辨荧光衰减法测量到受体分子 Rhodamine 700 的能量转移。激子运动在 Lumogen Red 浓度从 1×10(-4)到 5×10(-2) M 的范围内进行测量,结果与以前在固体聚合物中测量的激子扩散结果进行了比较。根据用于分析数据的理论方法,我们发现,即使考虑到分子平移,液体中的能量迁移速度也要比固体聚合物快 2-3 倍。在不同的主体环境中,Lumogen Red 浓度为 10 mM 的测量结果得出,在液体中的扩散常数范围为 2.2-3.1 nm(2)/ns,而在固体聚甲基丙烯酸甲酯(PMMA)中的扩散常数为 1.1-1.2 nm(2)/ns。液体中的结果与以前工作者的理论预测和数值模拟结果非常吻合,而固体 PMMA 中的结果则慢 2-3 倍。在液体环境中存在快速的能量平均化,而在固体基质中不存在这种情况,这种差异在讨论中被认为是造成这种差异的原因,在固体基质中,不利的构型和低能量捕获位被静态无序冻结。