Suppr超能文献

责任转移:纹状体模块化在不确定环境中对强化学习的重要性。

Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments.

作者信息

Amemori Ken-Ichi, Gibb Leif G, Graybiel Ann M

机构信息

McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA.

出版信息

Front Hum Neurosci. 2011 May 27;5:47. doi: 10.3389/fnhum.2011.00047. eCollection 2011.

Abstract

We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome-matrisome domains participate in modular reinforcement learning (RL). Based on anatomical and physiological evidence, it has been suggested that the modular organization of the striatum could represent a learning architecture. There is not, however, a coherent view of how such a learning architecture could relate to the organization of striatal outputs into the direct and indirect pathways of the basal ganglia, nor a clear formulation of how such a modular architecture relates to the RL functions attributed to the striatum. Here, we hypothesize that striosome-matrisome modules not only learn to bias behavior toward specific actions, as in standard RL, but also learn to assess their own relevance to the environmental context and modulate their own learning and activity on this basis. We further hypothesize that the contextual relevance or "responsibility" of modules is determined by errors in predictions of environmental features and that such responsibility is assigned by striosomes and conveyed to matrisomes via local circuit interneurons. To examine these hypotheses and to identify the general requirements for realizing this architecture in the nervous system, we developed a simple modular RL model. We then constructed a network model of basal ganglia circuitry that includes these modules and the direct and indirect pathways. Based on simple assumptions, this model suggests that while the direct pathway may promote actions based on striatal action values, the indirect pathway may act as a gating network that facilitates or suppresses behavioral modules on the basis of striatal responsibility signals. Our modeling functionally unites the modular compartmental organization of the striatum with the direct-indirect pathway divisions of the basal ganglia, a step that we suggest will have important clinical implications.

摘要

我们在此提出,纹状体的模块化组织反映了一种上下文敏感的模块化学习架构,其中聚集的纹状体小体 - 基质小体区域参与模块化强化学习(RL)。基于解剖学和生理学证据,有人提出纹状体的模块化组织可能代表一种学习架构。然而,对于这样一种学习架构如何与纹状体输出组织成基底神经节的直接和间接通路相关,并没有一个连贯的观点,对于这样一种模块化架构如何与归因于纹状体的RL功能相关,也没有一个清晰的表述。在这里,我们假设纹状体小体 - 基质小体模块不仅像在标准RL中那样学习使行为偏向特定动作,而且还学习评估它们自身与环境上下文的相关性,并在此基础上调节它们自身的学习和活动。我们进一步假设模块的上下文相关性或“责任”由环境特征预测中的误差决定,并且这种责任由纹状体小体分配,并通过局部回路中间神经元传递给基质小体。为了检验这些假设并确定在神经系统中实现这种架构的一般要求,我们开发了一个简单的模块化RL模型。然后,我们构建了一个包括这些模块以及直接和间接通路的基底神经节电路网络模型。基于简单的假设,该模型表明,虽然直接通路可能基于纹状体动作值促进动作,但间接通路可能充当一个门控网络,根据纹状体责任信号促进或抑制行为模块。我们的建模在功能上将纹状体的模块化分区组织与基底神经节的直接 - 间接通路划分结合起来,我们认为这一步骤将具有重要的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921c/3105240/5fb9cb178b79/fnhum-05-00047-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验