Suppr超能文献

研究下丘脑促性腺激素释放激素(GnRH)神经元的新兴方法。

Emerging methodologies for the study of hypothalamic gonadotropin-releasing-hormone (GnRH) neurons.

机构信息

Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio TX, 78249; Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA.

出版信息

Integr Comp Biol. 2008 Nov;48(5):548-59. doi: 10.1093/icb/icn039. Epub 2008 May 17.

Abstract

Gonadotropin-releasing-hormone (GnRH) neurons form part of a central neural oscillator that controls sexual reproduction through intermittent release of the GnRH peptide. Activity of GnRH neurons, and by extension release of GnRH, has been proposed to reflect intrinsic properties and synaptic input of GnRH neurons. To study GnRH neurons, we used traditional electrophysiology and computational methods. These emerging methodologies enhance the elucidation of processing in GnRH neurons. We used dynamic current-clamping to understand how living GnRH somata process input from glutamate and GABA, two key neurotransmitters in the neuroendocrine hypothalamus. In order to study the impact of synaptic integration in dendrites and neuronal morphology, we have developed full-morphology models of GnRH neurons. Using dynamic clamping, we have demonstrated that small-amplitude glutamatergic currents can drive repetitive firing in GnRH neurons. Furthermore, application of simulated GABAergic synapses with a depolarized reversal potential have revealed two functional subpopulations of GnRH neurons: one population in which GABA chronically depolarizes membrane potential (without inducing action potentials) and a second population in which GABAergic excitation results in slow spiking. Finally, when AMPA-type and GABA-type simulated inputs are applied together, action potentials occur when the AMPA-type conductance occurs during the descending phase of GABAergic excitation and at the nadir of GABAergic inhibition. Compartmental computer models have shown that excitatory synapses at >300 microns from somtata are unable to drive spiking with purely passive dendrites. In models with active dendrites, distal synapses are more efficient at driving spiking than somatic inputs. We then used our models to extend the results from dynamic current clamping at GnRH somata to distribute synaptic inputs along the dendrite. We show that propagation delays for dendritic synapses alter synaptic integration in GnRH neurons by widening the temporal window of interaction for the generation of action potentials. Finally, we have shown that changes in dendrite morphology can modulate the output of GnRH neurons by altering the efficacy of action potential generation in response to after-depolarization potentials (ADPs). Taken together, the methodologies of dynamic current clamping and multi-compartmental modeling can make major contributions to the study of synaptic integration and structure-function relationships in hypothalamic GnRH neurons. Use of these methodological approaches will continue to provide keen insights leading to conceptual advances in our understanding of reproductive hormone secretion in normal and pathological physiology and open the door to understanding whether the mechanisms of pulsatile GnRH release are conserved across species.

摘要

促性腺激素释放激素 (GnRH) 神经元构成了控制生殖的中枢神经振荡器的一部分,通过间歇性释放 GnRH 肽来控制生殖。GnRH 神经元的活动,以及 GnRH 的释放,被认为反映了 GnRH 神经元的固有特性和突触输入。为了研究 GnRH 神经元,我们使用了传统的电生理学和计算方法。这些新兴的方法增强了对 GnRH 神经元处理过程的阐明。我们使用动态电流箝位来了解活 GnRH 体如何处理来自谷氨酸和 GABA 的输入,谷氨酸和 GABA 是神经内分泌下丘脑的两种关键神经递质。为了研究树突和神经元形态中的突触整合的影响,我们开发了 GnRH 神经元的全形态模型。使用动态箝位,我们证明了小幅度的谷氨酸电流可以驱动 GnRH 神经元的重复放电。此外,应用具有去极化反转电位的模拟 GABA 能突触揭示了 GnRH 神经元的两个功能亚群:一个亚群中,GABA 持续去极化膜电位(不诱导动作电位),另一个亚群中,GABA 能兴奋导致缓慢放电。最后,当 AMPA 型和 GABA 型模拟输入一起应用时,当 AMPA 型电导发生在 GABA 能兴奋的下降阶段和 GABA 能抑制的最低点时,会发生动作电位。分室计算机模型表明,距体 300 微米以上的兴奋性突触不能仅用被动树突驱动放电。在具有活性树突的模型中,远端突触比体输入更有效地驱动放电。然后,我们使用我们的模型将 GnRH 体的动态电流箝位的结果扩展到沿树突分布突触输入。我们表明,树突突触的传播延迟通过拓宽产生动作电位的相互作用的时间窗口,改变 GnRH 神经元中的突触整合。最后,我们表明,树突形态的变化可以通过改变对后去极化电位 (ADP) 的动作电位产生的功效来调节 GnRH 神经元的输出。总之,动态电流箝位和多室建模的方法可以对下丘脑 GnRH 神经元中的突触整合和结构-功能关系的研究做出重大贡献。这些方法的应用将继续提供敏锐的见解,推动我们对正常和病理生理学中生殖激素分泌的理解的概念性进展,并为了解脉冲 GnRH 释放的机制是否在物种间保守打开大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验