IEEE Trans Vis Comput Graph. 2011 Nov;17(11):1560-73. doi: 10.1109/TVCG.2011.97. Epub 2011 Jun 16.
The multidimensional transfer function is a flexible and effective tool for exploring volume data. However, designing an appropriate transfer function is a trial-and-error process and remains a challenge. In this paper, we propose a novel volume exploration scheme that explores volumetric structures in the feature space by modeling the space using the Gaussian mixture model (GMM). Our new approach has three distinctive advantages. First, an initial feature separation can be automatically achieved through GMM estimation. Second, the calculated Gaussians can be directly mapped to a set of elliptical transfer functions (ETFs), facilitating a fast pre-integrated volume rendering process. Third, an inexperienced user can flexibly manipulate the ETFs with the assistance of a suite of simple widgets, and discover potential features with several interactions. We further extend the GMM-based exploration scheme to time-varying data sets using an incremental GMM estimation algorithm. The algorithm estimates the GMM for one time step by using itself and the GMM generated from its previous steps. Sequentially applying the incremental algorithm to all time steps in a selected time interval yields a preliminary classification for each time step. In addition, the computed ETFs can be freely adjusted. The adjustments are then automatically propagated to other time steps. In this way, coherent user-guided exploration of a given time interval is achieved. Our GPU implementation demonstrates interactive performance and good scalability. The effectiveness of our approach is verified on several data sets.
多维传递函数是探索体数据的灵活有效工具。然而,设计合适的传递函数是一个反复试验的过程,仍然具有挑战性。在本文中,我们提出了一种新颖的体数据探索方案,通过使用高斯混合模型 (GMM) 对空间进行建模,在特征空间中探索体数据结构。我们的新方法有三个独特的优点。首先,可以通过 GMM 估计自动实现初始特征分离。其次,计算出的高斯分布可以直接映射到一组椭圆传递函数 (ETF),便于快速预集成的体绘制过程。第三,经验不足的用户可以借助一系列简单的小部件灵活地操作 ETF,并通过几次交互发现潜在的特征。我们进一步将基于 GMM 的探索方案扩展到使用增量 GMM 估计算法的时变数据集。该算法通过使用自身和前几个步骤生成的 GMM 来估计一个时间步的 GMM。依次将增量算法应用于选定时间间隔中的所有时间步,即可为每个时间步生成初步分类。此外,还可以自由调整计算出的 ETF。这些调整会自动传播到其他时间步。通过这种方式,可以实现对给定时间间隔的连贯的用户引导式探索。我们的 GPU 实现展示了交互性能和良好的可扩展性。我们的方法在几个数据集上得到了验证。