Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, China.
Math Biosci Eng. 2011 Jul;8(3):689-94. doi: 10.3934/mbe.2011.8.689.
The global stability for a delayed HIV-1 infection model is investigated. It is shown that the global dynamics of the system can be completely determined by the reproduction number, and the chronic infected equilibrium of the system is globally asymptotically stable whenever it exists. This improves the related results presented in [S. A. Gourley,Y. Kuang and J.D.Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics, 2(2008), 140-153].
研究了一个延迟 HIV-1 感染模型的全局稳定性。结果表明,系统的全局动力学可以完全由繁殖数决定,并且只要存在,系统的慢性感染平衡点就是全局渐近稳定的。这改进了文献[S. A. Gourley,Y. Kuang and J.D.Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics, 2(2008), 140-153]中的相关结果。