Suppr超能文献

FFCA:一种基于可行性的代谢网络通量耦合分析方法。

FFCA: a feasibility-based method for flux coupling analysis of metabolic networks.

机构信息

DFG-Research Center Matheon, Berlin, Germany.

出版信息

BMC Bioinformatics. 2011 Jun 15;12:236. doi: 10.1186/1471-2105-12-236.

Abstract

BACKGROUND

Flux coupling analysis (FCA) is a useful method for finding dependencies between fluxes of a metabolic network at steady-state. FCA classifies reactions into subsets (called coupled reaction sets) in which activity of one reaction implies activity of another reaction. Several approaches for FCA have been proposed in the literature.

RESULTS

We introduce a new FCA algorithm, FFCA (Feasibility-based Flux Coupling Analysis), which is based on checking the feasibility of a system of linear inequalities. We show on a set of benchmarks that for genome-scale networks FFCA is faster than other existing FCA methods.

CONCLUSIONS

We present FFCA as a new method for flux coupling analysis and prove it to be faster than existing approaches. A corresponding software tool is freely available for non-commercial use at http://www.bioinformatics.org/ffca/.

摘要

背景

通量耦合分析(FCA)是一种在稳态下寻找代谢网络通量之间依赖关系的有用方法。FCA 将反应分类为子集(称为耦合反应集),其中一个反应的活性意味着另一个反应的活性。文献中已经提出了几种 FCA 方法。

结果

我们引入了一种新的 FCA 算法,FFCA(基于可行性的通量耦合分析),它基于检查线性不等式系统的可行性。我们在一组基准测试中表明,对于基因组规模的网络,FFCA 比其他现有的 FCA 方法更快。

结论

我们提出了 FFCA 作为一种新的通量耦合分析方法,并证明它比现有的方法更快。相应的软件工具可在 http://www.bioinformatics.org/ffca/ 上免费供非商业使用。

相似文献

4
On correlated reaction sets and coupled reaction sets in metabolic networks.关于代谢网络中的相关反应集和偶联反应集
J Bioinform Comput Biol. 2015 Aug;13(4):1571003. doi: 10.1142/S0219720015710031. Epub 2015 Jan 30.
7
Generic flux coupling analysis.通用通量耦合分析
Math Biosci. 2015 Apr;262:28-35. doi: 10.1016/j.mbs.2015.01.003. Epub 2015 Jan 22.
8
Quantitative flux coupling analysis.定量通量耦合分析
J Math Biol. 2019 Apr;78(5):1459-1484. doi: 10.1007/s00285-018-1316-9. Epub 2018 Dec 10.

引用本文的文献

2
Evolutionary design principles in metabolism.代谢中的进化设计原则。
Proc Biol Sci. 2019 Mar 13;286(1898):20190098. doi: 10.1098/rspb.2019.0098.
3
Quantitative flux coupling analysis.定量通量耦合分析
J Math Biol. 2019 Apr;78(5):1459-1484. doi: 10.1007/s00285-018-1316-9. Epub 2018 Dec 10.
4
SteadyCom: Predicting microbial abundances while ensuring community stability.SteadyCom:在确保群落稳定性的同时预测微生物丰度。
PLoS Comput Biol. 2017 May 15;13(5):e1005539. doi: 10.1371/journal.pcbi.1005539. eCollection 2017 May.

本文引用的文献

4
Computationally efficient flux variability analysis.计算效率高的通量可变性分析。
BMC Bioinformatics. 2010 Sep 29;11:489. doi: 10.1186/1471-2105-11-489.
5
Building and analysing genome-scale metabolic models.构建和分析基因组规模的代谢模型。
Biochem Soc Trans. 2010 Oct;38(5):1197-201. doi: 10.1042/BST0381197.
7
Descriptive and predictive applications of constraint-based metabolic models.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5460-3. doi: 10.1109/IEMBS.2009.5334064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验