Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy.
J Neurophysiol. 2011 Sep;106(3):1411-23. doi: 10.1152/jn.00207.2011. Epub 2011 Jun 15.
Temporal lobe seizures in humans correlate with stereotyped electrophysiological patterns that can be reproduced in animal models to study the cellular and network changes responsible for ictogenesis. Seizure-like discharges that mimic seizure patterns in humans were induced in the entorhinal cortex of the in vitro isolated guinea pig brain by 3-min arterial applications of the GABA(A) receptor antagonist bicuculline. The onset of seizure is characterized by a paradoxical interruption of firing for several seconds in principal neurons coupled with both enhanced interneuronal firing and increased extracellular potassium (Gnatkovsky et al. 2008). The evolution of action potential features from firing break to excessive and synchronous activity associated with the progression of seizure itself is analyzed here. We utilized phase plot analysis to characterize action potential features of entorhinal cortex neurons in different phases of a seizure. Compared with preictal action potentials, resumed spikes in layer II-III neurons (n = 17) during the early phase of the seizure-like discharge displayed 1) depolarized threshold, 2) lower peak amplitude, 3) depolarized voltage of repolarization and 4) decelerated depolarizing phase, and 5) spike doublettes. Action potentials in deep-layer principal cells (n = 8) during seizure did not show the marked feature changes observed in superficial layer neurons. Action potential reappearance correlated with an increase in extracellular potassium. High-threshold, slow-action potentials similar to those observed in the irregular firing phase of a seizure were reproduced in layer II-III neurons by direct cortical application of a highly concentrated potassium solution (12-24 mM). We propose that the generation of possibly nonsomatic action potentials by increased extracellular potassium represents a crucial step toward reestablish firing after an initial depression in an acute model of temporal lobe seizures. Resumed firing reengages principal neurons into seizure discharge and promotes the transition toward the synchronized burst firing that characterizes the late phase of a seizure.
人类颞叶癫痫发作与刻板的电生理模式相关,这些模式可以在动物模型中重现,以研究导致癫痫发作的细胞和网络变化。通过对离体豚鼠脑内的内嗅皮层进行 3 分钟的动脉应用 GABA(A) 受体拮抗剂荷包牡丹碱,诱发类似于人类癫痫发作模式的癫痫样放电。癫痫发作的起始特征是主要神经元的放电中断数秒,同时伴有增强的中间神经元放电和细胞外钾增加(Gnatkovsky 等人,2008 年)。这里分析了从放电中断到与癫痫发作本身进展相关的过度和同步活动的动作电位特征的演变。我们利用相位图分析来描述癫痫样放电不同阶段的内嗅皮层神经元的动作电位特征。与发作前的动作电位相比,在癫痫样放电早期阶段,II-III 层神经元中的恢复性尖峰(n=17)显示出 1)去极化阈,2)峰值幅度降低,3)复极化电压去极化,4)去极化相减速,以及 5)双脉冲。在癫痫发作期间,深层主细胞(n=8)的动作电位没有显示出在浅层神经元中观察到的明显特征变化。动作电位的再次出现与细胞外钾的增加相关。通过直接皮质应用高浓度钾溶液(12-24 mM),在 II-III 层神经元中重现了类似于癫痫不规则放电阶段观察到的高阈值、慢动作电位。我们提出,细胞外钾增加产生的可能非躯体性动作电位代表了急性颞叶癫痫发作模型中初始抑制后重新开始放电的关键步骤。恢复的放电重新将主神经元纳入癫痫发作,并促进向同步爆发放电的转变,这是癫痫发作后期的特征。