State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
Dalton Trans. 2011 Nov 14;40(42):11131-7. doi: 10.1039/c1dt10279f. Epub 2011 Jun 17.
The ground and excited state geometries of several red-emitting phosphors (N^N)(2)Os(P^P) [where N^N = 5-(1-isoquinolyl)-1,2,4-triazoles, P^P = bis(dimethylphosphino)methylene(dmpm) (1); P^P = cis-1,2-bis-(dimethylphosphino)ethene(dmpe) (2); P^P = 1,2-bis(dimethylphosphino)benzene(dmpb) (3); P^P = 1,2-bis(dimethylphosphino)naphthalene(dmpn) (4); P^P = 1,2-bis(dimethylphosphino)-4-cyano-benzene(dmpcb) (5)] have been investigated by using the density functional theory (DFT) methods. The calculated results indicate that, for the studied complexes, the electron-transporting performance is better than the hole-transporting performance. The alteration of cis-P^P ancillary ligands with different conjugation lengths and substituents has an impact on the optoelectronic properties of these complexes, especially the electron-withdrawing group -CN in 5. The calculated energy gaps are nearly the same for complexes 1 to 4 (3.34 eV), while for 5, the HOMO and LUMO energies are lowered and the energy gap increases (3.42 eV). The absorption of 1 is red shifted, while that of 5 is blue shifted compared with the absorptions of 2, 3, and 4, which have similar absorptions. Complexes 2, 3, and 4 have almost identical emission wavelength 699 nm, while 1 (715 nm) and 5 (735 nm) are red shifted. The calculated electron affinities and reorganization energies indicate that complex 5 is the easiest for electron injection and has the best electron-transporting performance.
几种红光发射磷光体(N^N)(2)Os(P^P)[其中 N^N = 5-(1-异喹啉基)-1,2,4-三唑,P^P = 双(二甲基膦基)亚甲基(dmpm)(1);P^P = 顺式-1,2-双(二甲基膦基)乙烯(dmpe)(2);P^P = 1,2-双(二甲基膦基)苯(dmpb)(3);P^P = 1,2-双(二甲基膦基)萘(dmpn)(4);P^P = 1,2-双(二甲基膦基)-4-氰基苯(dmpcb)(5)]的基态和激发态几何结构已通过使用密度泛函理论(DFT)方法进行了研究。计算结果表明,对于所研究的配合物,电子输运性能优于空穴输运性能。顺式-P^P 辅助配体的变化具有不同的共轭长度和取代基对这些配合物的光电性质有影响,特别是 5 中的吸电子基团 -CN。计算得到的能隙对于配合物 1 到 4(3.34 eV)几乎相同,而对于 5,HOMO 和 LUMO 能量降低,能隙增加(3.42 eV)。1 的吸收红移,而 5 的吸收蓝移与 2、3 和 4 的吸收相似。配合物 2、3 和 4 具有几乎相同的发射波长 699 nm,而 1(715 nm)和 5(735 nm)则红移。计算得到的电子亲和力和重组能表明,配合物 5 最容易进行电子注入,具有最佳的电子输运性能。