Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Dukjin, Jeonju 561-756, Republic of Korea.
J Biomed Mater Res A. 2011 Sep 15;98(4):517-26. doi: 10.1002/jbm.a.33135. Epub 2011 Jun 16.
The development of biodegradable and biocompatible materials is the basis for tissue engineering and drug delivery. The aims of this study are to develop the poly(oxalate-co-oxamide) (POXAM) and evaluate its physicochemical properties and biocompatibility as the initial step for the development of new biomaterials. POXAM had a molecular weight of ~70,000 Da and rapidly degraded under physiological condition with a half-hydrolysis of ~4 days. POXAM films exhibited relative hydrophilic nature because of the presence of oxamide linkages and induced a higher cell attachment and proliferation compared with poly(lactic-co-glycolic acid) (PLGA) films. In vitro inflammatory responses to POXAM were evaluated using murine macrophage RAW 264.7 cells. POXAM films minimally stimulated the cells to generate less production of tumor necrosis factor-alpha (TNF-α) than PLGA films. We assessed the in vivo inflammatory responses to POXAM films implanted in the dorsal skin of rats. Histological studies revealed that POXAM provoked remarkably reduced inflammatory responses, evidenced by the less accumulation of inflammatory cells and giant cells, thinner fibrotic capsules, in comparison with PLGA. Given its excellent biocompatibility, fast degradation, and very mild inflammatory responses, POXAM has great potential for biomedical applications, such as scaffolds, wound dressing, and fast drug delivery.
可生物降解和生物相容材料的发展是组织工程和药物输送的基础。本研究的目的是开发聚(草酸酯-己内酰胺)(POXAM),并评估其物理化学性质和生物相容性,作为开发新型生物材料的初始步骤。POXAM 的分子量约为 70,000 Da,在生理条件下迅速降解,半衰期约为 4 天。由于存在己内酰胺键,POXAM 薄膜具有相对亲水的性质,与聚乳酸-共-羟基乙酸(PLGA)薄膜相比,诱导更高的细胞附着和增殖。使用小鼠巨噬细胞 RAW 264.7 细胞评估了对 POXAM 的体外炎症反应。POXAM 薄膜刺激细胞产生的肿瘤坏死因子-α(TNF-α)少于 PLGA 薄膜。我们评估了 POXAM 薄膜植入大鼠背部皮肤后的体内炎症反应。组织学研究表明,与 PLGA 相比,POXAM 引起的炎症反应明显减少,表现为炎症细胞和巨细胞的积累减少,纤维囊变薄。鉴于其出色的生物相容性、快速降解和非常温和的炎症反应,POXAM 在生物医学应用方面具有巨大潜力,例如支架、伤口敷料和快速药物输送。