Suppr超能文献

贝叶斯多源定位在不确定海洋环境下的应用。

Bayesian multiple-source localization in an uncertain ocean environment.

机构信息

School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.

出版信息

J Acoust Soc Am. 2011 Jun;129(6):3577-89. doi: 10.1121/1.3575594.

Abstract

This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out.

摘要

本文考虑了当海洋环境(水柱和海底)特性知之甚少时,对多个声源进行同时定位的问题。提出了一种贝叶斯公式,其中将环境参数、噪声统计数据以及多个声源的位置和复强度(幅度和相位)视为未知随机变量,这些变量受声数据和先验信息的约束。本文考虑了两种方法来估计声源参数。聚焦方法通过自适应混合优化最大化后验概率密度(PPD)。边缘化通过有效的马尔可夫链蒙特卡罗方法对 PPD 进行积分,以产生声源范围和深度的联合边际概率分布,从而获得声源位置。这种方法还提供了所有参数的定量不确定性分析,这有助于理解反问题,并且可能具有实际意义(例如,源强度概率分布)。在这两种方法中,每个频率的源强度和噪声方差的闭式最大似然表达式允许对这些参数进行隐式采样,从而大大降低了反演的维数和难度。本文还介绍了这两种方法在不确定浅水环境中单频和多频声源定位中的应用示例,并进行了蒙特卡罗性能评估研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验