Suppr超能文献

细菌细胞周期的模块化使 DNA 复制能够实现独立的空间和时间控制。

Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Curr Biol. 2011 Jul 12;21(13):1092-101. doi: 10.1016/j.cub.2011.05.040. Epub 2011 Jun 16.

Abstract

BACKGROUND

Complex regulatory circuits in biology are often built of simpler subcircuits or modules. In most cases, the functional consequences and evolutionary origins of modularity remain poorly defined.

RESULTS

Here, by combining single-cell microscopy with genetic approaches, we demonstrate that two separable modules independently govern the temporal and spatial control of DNA replication in the asymmetrically dividing bacterium Caulobacter crescentus. DNA replication control involves DnaA, which promotes initiation, and CtrA, which silences initiation. We show that oscillations in DnaA activity dictate the periodicity of replication while CtrA governs the asymmetric replicative fates of daughter cells. Importantly, we demonstrate that DnaA activity oscillates independently of CtrA.

CONCLUSIONS

The genetic separability of spatial and temporal control modules in Caulobacter reflects their evolutionary history. DnaA is the central component of an ancient and phylogenetically widespread circuit that governs replication periodicity in Caulobacter and most other bacteria. By contrast, CtrA, which is found only in the asymmetrically dividing α-proteobacteria, was integrated later in evolution to enforce replicative asymmetry on daughter cells.

摘要

背景

生物学中的复杂调控回路通常由更简单的子回路或模块构建而成。在大多数情况下,模块性的功能后果和进化起源仍未得到明确界定。

结果

在这里,我们通过结合单细胞显微镜和遗传方法,证明了两个可分离的模块独立控制着不对称分裂细菌新月柄杆菌中 DNA 复制的时空控制。DNA 复制控制涉及促进起始的 DnaA 和沉默起始的 CtrA。我们表明,DnaA 活性的振荡决定了复制的周期性,而 CtrA 则决定了子细胞的不对称复制命运。重要的是,我们证明了 DnaA 活性的振荡独立于 CtrA。

结论

新月柄杆菌中时空控制模块的遗传可分离性反映了它们的进化历史。DnaA 是一个古老且在系统发育上广泛分布的调控复制周期性的电路的核心组件,该电路在新月柄杆菌和大多数其他细菌中起作用。相比之下,仅在不对称分裂的α变形菌中发现的 CtrA 是在进化后期被整合进来的,以对子代细胞施加复制不对称性。

相似文献

1
Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication.
Curr Biol. 2011 Jul 12;21(13):1092-101. doi: 10.1016/j.cub.2011.05.040. Epub 2011 Jun 16.
3
Morphological and functional asymmetry in alpha-proteobacteria.
Trends Microbiol. 2004 Aug;12(8):361-5. doi: 10.1016/j.tim.2004.06.002.
4
Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.
Mol Microbiol. 2005 Feb;55(4):1233-45. doi: 10.1111/j.1365-2958.2004.04459.x.
5
Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter.
J Bacteriol. 2009 Sep;191(18):5706-16. doi: 10.1128/JB.00525-09. Epub 2009 Jul 24.
6
DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus.
Mol Microbiol. 2005 Dec;58(5):1340-53. doi: 10.1111/j.1365-2958.2005.04912.x.
7
Regulation of chromosomal replication in Caulobacter crescentus.
Plasmid. 2012 Mar;67(2):76-87. doi: 10.1016/j.plasmid.2011.12.007. Epub 2011 Dec 29.
9
Regulation of the bacterial cell cycle by an integrated genetic circuit.
Nature. 2006 Dec 14;444(7121):899-904. doi: 10.1038/nature05321. Epub 2006 Nov 29.
10
The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication.
Microbiology (Reading). 2012 Oct;158(Pt 10):2492-2503. doi: 10.1099/mic.0.055285-0. Epub 2012 Jul 12.

引用本文的文献

1
A deoxynucleoside triphosphate triphosphohydrolase promotes cell cycle progression in .
J Bacteriol. 2025 Jun 24;207(6):e0014525. doi: 10.1128/jb.00145-25. Epub 2025 Jun 2.
2
DnaA modulates the gene expression and morphology of the Lyme disease spirochete.
bioRxiv. 2024 Aug 29:2024.06.08.598065. doi: 10.1101/2024.06.08.598065.
3
Three factors ParA, TipN, and DnaA-mediated chromosome replication initiation are contributors of centromere segregation in .
Mol Biol Cell. 2024 May 1;35(5):ar68. doi: 10.1091/mbc.E23-12-0503. Epub 2024 Apr 3.
4
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
5
The heat shock protein LarA activates the Lon protease in response to proteotoxic stress.
Nat Commun. 2023 Nov 22;14(1):7636. doi: 10.1038/s41467-023-43385-x.
6
7
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30.
8
Computational modeling of unphosphorylated CtrA: binding in the cell cycle.
iScience. 2021 Nov 10;24(12):103413. doi: 10.1016/j.isci.2021.103413. eCollection 2021 Dec 17.

本文引用的文献

3
Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1052-7. doi: 10.1073/pnas.1015397108. Epub 2010 Dec 29.
6
Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator.
Cell. 2010 Apr 16;141(2):268-79. doi: 10.1016/j.cell.2010.03.021.
7
Getting in the loop: regulation of development in Caulobacter crescentus.
Microbiol Mol Biol Rev. 2010 Mar;74(1):13-41. doi: 10.1128/MMBR.00040-09.
8
Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC.
Nat Rev Microbiol. 2010 Mar;8(3):163-70. doi: 10.1038/nrmicro2314.
10
SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis.
Mol Microbiol. 2009 Sep;73(5):963-74. doi: 10.1111/j.1365-2958.2009.06825.x. Epub 2009 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验