Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
Biochimie. 2011 Aug;93(8):1341-50. doi: 10.1016/j.biochi.2011.06.001. Epub 2011 Jun 12.
In the presence of specific metal ions, DNA oligonucleotides containing guanine repeat sequences can adopt G-quadruplex structures. In this work, we used a combination of spectroscopic and calorimetric techniques to investigate the conformation and unfolding thermodynamics of the K(+)-form of five G-quadruplexes with sequences: d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), G2, d(G(3)T(2)G(3)TGTG(3)T(2)G(3)), G3, their analogs where T is replaced with U, G2-U and G3-U, and r(G(2)U(2)G(2)UGUG(2)U(2)G(2)), rG2. These G-quadruplexes show CD spectra characteristic of the "chair" conformation (G2 and G2-U), or "basket" conformation (rG2); or a mixture of these two conformers (G3 and G3-U). Thermodynamic profiles show that the favorable folding of each G-quadruplex results from the typical compensation of a favorable enthalpy and unfavorable entropy contributions. G-quadruplex stability increase in the following order (in ΔG°(20)): rG2 (-1.3 kcal/mol) < G2 < G2-U <G3-U (chair) < G3 (chair) <G3-U (basket) < G3 (basket) (-8.6 kcal/mol), due to favorable enthalpy contribution from the stacking of G-quartets. We used ITC to determine thermodynamic binding profiles for the interaction of the minor groove ligands, netropsin and distamycin, with each G-quadruplex. Both ligands bind with high exothermic enthalpies (~ -10.8 kcal/mol), 1:1 stoichiometries, and weak affinities (~8 × 10(4) M(-1)). The similarity of the binding thermodynamic profiles, together with the absence of induced Cotton effects, indicates a surface or outside binding mode. We speculate that the top and bottom surfaces of the G-quadruplex comprise the potential MGBL binding sites, where the ligand lies on the surface forming van der Waals interactions with the guanines of the G-quartets and loop nucleotides.
在特定金属离子存在的情况下,含有鸟嘌呤重复序列的 DNA 寡核苷酸可以采用 G-四链体结构。在这项工作中,我们使用光谱和量热技术相结合的方法来研究 K(+)形式的五个 G-四链体的构象和展开热力学:d(G(2)T(2)G(2)TGTG(2)T(2)G(2)),G2,d(G(3)T(2)G(3)TGTG(3)T(2)G(3)),G3,它们的类似物 T 被 U 取代,G2-U 和 G3-U,以及 r(G(2)U(2)G(2)UGUG(2)U(2)G(2)),rG2。这些 G-四链体的 CD 光谱显示出“椅式”构象(G2 和 G2-U)或“篮式”构象(rG2)的特征;或者这两种构象的混合物。热力学曲线表明,每个 G-四链体的有利折叠是由典型的焓变和不利熵变贡献的补偿产生的。G-四链体稳定性的增加顺序如下(在ΔG°(20)中):rG2(-1.3 kcal/mol)<G2<G2-U<G3-U(椅式)<G3(椅式)<G3-U(篮式)<G3(篮式)(-8.6 kcal/mol),由于来自 G-四联体堆积的有利焓贡献。我们使用 ITC 来确定与每个 G-四链体相互作用的小沟配体,netropsin 和 distamycin 的热力学结合曲线。两种配体都以高放热焓(-10.8 kcal/mol),1:1 化学计量比和较弱的亲和力(8×10(4) M(-1))结合。结合热力学曲线的相似性,以及没有诱导的 Cotton 效应,表明存在表面或外部结合模式。我们推测 G-四链体的顶部和底部表面包含潜在的 MGBL 结合位点,其中配体位于表面上,与 G-四联体的鸟嘌呤和环核苷酸形成范德华相互作用。