Suppr超能文献

MeSHy:利用 MeSH 术语的出现频率和并发次数挖掘意想不到的 PubMed 信息。

MeSHy: Mining unanticipated PubMed information using frequencies of occurrences and concurrences of MeSH terms.

机构信息

Institute of Agrobiotechnology, Centre for Research and Technology-Hellas (CERTH), Thessaloniki, Greece.

出版信息

J Biomed Inform. 2011 Dec;44(6):919-26. doi: 10.1016/j.jbi.2011.05.009. Epub 2011 Jun 13.

Abstract

MOTIVATION

PubMed is the most widely used database of biomedical literature. To the detriment of the user though, the ranking of the documents retrieved for a query is not content-based, and important semantic information in the form of assigned Medical Subject Headings (MeSH) terms is not readily presented or productively utilized. The motivation behind this work was the discovery of unanticipated information through the appropriate ranking of MeSH term pairs and, indirectly, documents. Such information can be useful in guiding novel research and following promising trends.

METHODS

A web-based tool, called MeSHy, was developed implementing a mainly statistical algorithm. The algorithm takes into account the frequencies of occurrences, concurrences, and the semantic similarities of MeSH terms in retrieved PubMed documents to create MeSH term pairs. These are then scored and ranked, focusing on their unexpectedly frequent or infrequent occurrences.

RESULTS

MeSHy presents results through an online interactive interface facilitating further manipulation through filtering and sorting. The results themselves include the MeSH term pairs, along with MeSH categories, the score, and document IDs, all of which are hyperlinked for convenience. To highlight the applicability of the tool, we report the findings of an expert in the pharmacology field on querying the molecularly-targeted drug imatinib and nutrition-related flavonoids. To the best of our knowledge, MeSHy is the first publicly available tool able to directly provide such a different perspective on the complex nature of published work.

IMPLEMENTATION AND AVAILABILITY

Implemented in Perl and served by Apache2 at http://bat.ina.certh.gr/tools/meshy/ with all major browsers supported.

摘要

动机

PubMed 是生物医学文献最广泛使用的数据库。然而,对用户不利的是,为查询检索到的文档的排名不是基于内容的,并且以分配的医学主题词 (MeSH) 术语形式的重要语义信息不容易呈现或有效利用。这项工作的动机是通过适当排列 MeSH 术语对和间接排列文档来发现意外信息。此类信息可用于指导新的研究和跟踪有前途的趋势。

方法

开发了一个名为 MeSHy 的基于网络的工具,该工具实现了主要的统计算法。该算法考虑了在检索到的 PubMed 文档中出现、并发和 MeSH 术语的语义相似性的频率,以创建 MeSH 术语对。然后对这些术语对进行评分和排名,重点关注它们意外频繁或不频繁的出现。

结果

MeSHy 通过在线交互界面呈现结果,通过过滤和排序方便进一步操作。结果本身包括 MeSH 术语对、MeSH 类别、分数和文档 ID,所有这些都通过超链接方便地链接。为了突出该工具的适用性,我们报告了一位药理学领域专家在查询分子靶向药物伊马替尼和与营养相关的类黄酮方面的发现。据我们所知,MeSHy 是第一个能够直接提供有关已发表工作复杂性质的不同视角的公开可用工具。

实现和可用性

用 Perl 实现,并由 Apache2 在 http://bat.ina.certh.gr/tools/meshy/ 上提供服务,支持所有主流浏览器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验